如图,P为圆O外一点,PA,PB为圆O的切线,A,B为切点,PA=根号3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:34:48
如图,P为圆O外一点,直线OP交圆O于点B,C,过点P作圆O的切线PA,A为切点,已知PA/PB=3/2,求tan角PA

辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB

如图,P为圆O外一点,PA,PB切圆O于点A,B,角APB=60度,圆O的面积为9派.求弧AB的长及阴影部分的面积.

你没有图,至少告诉我,阴影部分是哪部分啊圆O的面积为9ππr^=9πr=3角APB=60°角AOB=120°角OAB=30°AB=2*OA*cos30°=3√3

P为圆O外一点,PA.PB切圆O于点A.B,PA=5,∠P=70°,C为弧AB上一点,过C作圆O的切线分别交PA.PB于

∠P=70°,所以∠AOB=110度,DA,DC,EB,EC分别是圆的切线,根据切线长定理,∠DOE=1/2∠AOB=55度DC=DA,EC=EB,所以周长为PD+PE+DE=PA+PB=2PA=10

如图,P为圆O外一点,PA,PB切圆O于点A,B,∠APB=60°,圆O的面积为9π.求弧AB的长及阴影部分的面积.

1.已知圆的面积求出半径;2.三角形为等腰三角形角APB为60°,得出三角形为等边三角形,可求出线段AB的长度.3.圆心(设圆心为O)到A、圆心到B的线OA\OB分别垂直与PAPB;可得出角AOB为1

已知:P为⊙O外一点,PA,

解题思路:本题主要根据切线性质和平行线的判定解答。解题过程:

如图,点p为圆o外一点,自点p向圆o引切线pa,pb,切点为a,b,cd切圆o于点e,交pa,pb于点c,d,若pa等于

连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图,已知P为圆O外一点,PA.PB分别切圆O于A,B,OP与AB相交与点M,C为AB弧上一点,试说明角OPC=角OCM

解题要点:连接OA因为PA、PB是⊙O的切线所以OA⊥PA,AB⊥OP所以可证△OAM∽△OPA所以OA/OP=OM/OA由OA=OC得OC/OP=OM/OC而∠COP=∠MOC所以△POC∽△COM

如图,过圆O外一点P作圆O的两条切线PA、PB,A、B为切点,BD⊥PA于点D,AE⊥PB于点E,AE、BD交于点H 求

因为PA,PB为切线所以PA=PB因为BD⊥PA于点D,AE⊥PB于点E三角形ABP的面积可以表示为二分之一BD*AP或者二分之一AE*BP所以AE=BD因为BD⊥PA,AE⊥PBAB=AB所以三角形

已知:如图,AB是⊙O的直径,P为⊙O外一点,PA⊥AB,弦BC∥OP

证明:如图,连接OC;∵BC∥OP,∴∠B=∠POA,∠BCO=∠COP,∵OB=OC,∴∠B=∠OCB,∴∠COP=∠AOP;∵OC=OA,OP=OP,∴△PCO≌△PAO,∴∠OCP=∠OAP=9

如图,以圆O外一点P引圆O的切线PA,PB,切点分别为A,B,Q为劣弧AB上一点,过Q做圆O的切线交PA,PB于E,F,

∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=

如图:已知⊙O半径为8cm,P为⊙O外一点,PO=16cm,PA、PB切⊙O于A、B,M为弧AB上一点,过M作⊙O切线交

(1)连接AO、BO、PO,则OA⊥AP,OB⊥BP.在RT△AOP中,AO=8cm,PO=16cm,所以,∠APO=30°.同理,∠BPO=30°.因此,∠APB=60°.(2)连接OM、OE、OF

如图,已知点P是圆O外一点,PA是圆O的切线,切点为A连接PO并延长交圆O于点C,B

设半径为r,角P=45°,sqrt(n)指对n开根号,/指除号,乘号省略=>PA=OA=r,=>OP=sqrt(2)r,OB=OC=r,1)PBPB=OP-OB=[sqrt(2)-1]r,PA=[sq

已知如图,P为圆O外一点,PO交圆O于C,弦AB=PO于E,∠EAC=∠CAP,求证:PA是圆O的切线

【纠正:AB⊥PO于E】证明:连接OA∵OA=OC∴∠OAC=∠OCA∵∠OAC=∠OAE+∠EAC∠OCA=∠P+∠CAP∠EAC=∠CAP∴∠OAE=∠P∵AB⊥PO∴∠OAE+∠EOA=90&#

如图,A是半径为2的圆O上的一点,P是OA的延长线上的一点,过点P做圆O的切线,切点为B,设PA=m,PB=n

(1)连接OB,则△PAB是直角三角形,所以PO的平方=PB的平方+OB的平方所以(m+2)^2=2^2+4^2,解得,m=2+2根5.(2)存在这样的点C,使△PBC为等边三角形,点c也是切点,且角

P为圆O外一点PA,PB为圆O切线,BC为直径.求证:CA‖OP

证明:连接AOPA和PB是圆切线,∠PAO=∠PBO=90°OA=OB,PO=PO△PAO≌△PBO∴∠POB=∠POA=1/2∠AOB∠ACB和∠AOB所对弧都是劣弧AB∴∠ACB=1/2∠AOB(