如图,p是正三角形abc的边bc上任意一点,连结ap,ap的中垂线分别交
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:38:42
1.当点P运动到AC的中点时,BD=DP=1/2a,BP=√3/2a,此时三角形PBD的周长为(1+√3)a;2.作点D关于AC的对称点D',则BD=1/2a,BD'=√7/2a,三角形PBD周长的最
PA=PB+PC.理由: 在PA上截取PD=PB,连接BD,∵ΔABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠P=∠C=60°,∴ΔPBD是等边三角形,∴PB=BD,∠PBD
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
由于P点任意,且DEF位置不确定,应该是没有具体值的只有范围0
AP=AP'=PP'=2P'C=PB=4PC=2√3∴∠P'PC=90°∠PCP'=30°由勾股定理得到AP^2+PC^2=P'C^2∠P'PC=90°AP=1/2PB所以AP对的角PCP'就是30°
在Rt△BPQ中,设PB=x,由∠B=60°,得:BQ=x2,PQ=32,从而有PC=CR=a-x,∴△BPQ与△CPR的面积之和为:S=38x2+34(a-x)2=338(x-23a)2+312a2
以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 
如果用初中的做法的话,如下:经过仔细推敲,暂时未发现证明过程有问题
连接BN,CM∵等边△ACN,等边△ABM∴AB=AM,AC=AN∠CAN=∠BAM=60°∴∠CAN+∠BAC=∠BAM+∠BAC即∠BAN=∠CAM∴△BAN≌△MAC∴BN=CM又∵BN=2EF
(1)△ABC、△DCE为正三角形所以AC=BC,DC=CE∠ACB=60°,∠DCE=60°所以∠ACB+∠ACD=∠DCE+∠ACD即∠BCD=∠ACE在△BCD与△ACE中AC=BC,DC=CE
http://zhidao.baidu.com/question/466261225.html
1.P为AC中点时,△PDC为正三角形,△PBC为直角三角形PB=√3·PC=√3·a/2PD=a/2△PBD周长L=PB+PD+BD=a+√3·a/22.作点B关于AC对称的点B',连DB'交AC于
因为:AB=AC=BC=a,D为BC的中点,连接AD所以:AD=√3/2a连接BP,只有BP⊥AC,即动点P是AC的中点时,BP才能是直线(直线比斜线短),PBD的周长才会最小所以BP=AD=√3/2
(1)因为PA⊥底面ABC,PB与底面ABC所成的角为π3所以 ∠PBA=π3 因为AB=2,所以PA=23VP−ABC=13S△ABC•PA=13•34•4•23=2
(1)三棱锥P-ABC的体积=﹙1/3﹚×3×﹙√3/4﹚×6²=9√3﹙体积单位﹚(2)侧面PBC与底面ABC所成二面角α:设D是BC中点则AD=3√3tanα=PA/AB=1/√3α=3
利用AB分别在C点产生的电场,然后矢量相加
∵△P‘AC是△PAC绕点A旋转得到的∴△PAB≌△P’AC∴∠P‘AC=∠PAC∵△ABC是等边三角形∴∠BAC=60°∴∠PAP’=∠P‘AC+∠PAC=∠PAC+∠PAB=∠BAC=60°记得及
圆锥的底面周长是6π,则6π=nπ×6180,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=32+62=45=