如图,△ABC中,E是内心,AE延长线交△ABC的外接圆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:16:31
E是BC弧中点,连结CE,BE=IE=CE,《BCE=〈BAE(同弧圆周角相等),〈BAE=〈EAC,〈EAC=〈DCE,〈DEC=〈AEC(公用),△CDE∽△ACE,CE/AE=DE/CE,CE^
∵点P是△ABC的内心,∴PB平分∠ABC,PA平分∠BAC,PC平分∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∴∠PBC+∠PCA+∠PAB=90°,故答案为:90°
①BE=IE 证明:连接BI.∵I为△ABC内心,∴∠1=∠2,∠3=∠5,∵∠3=∠4,∴∠4=∠5,∵∠BIE=∠2+∠5,∠EBI=∠1+∠4,∴∠BIE=∠E
证明:因为E是三角形ABC的内心所以角1=角2角ABE=角CBE因为角2=角CBD角BED=角ABE+角1角DBE=角CBE+角CBD所以角DBE=角BED所以DB=DE因为角1=1/2弧DB角2=1
∠BDE=1/2*(180度-1/2*(∠A+∠B))(1)∠BFE=180度-1/2*(180度-∠BDE)(2)联立(1)(2)可得∠BFE=135度-1/8*(∠A+∠B)∵∠A+∠B135度-
O是外心,求角BOC:根据外接圆性质,圆心角BOC是其对应弧段的圆周角A=60度的2倍,即角BOC=120度I是内心求角BIC根据内接圆性质(圆心是三角形角平分线的交点),角BIC=180度-0.5*
证明:(1)∵AC=BC∴∠CAB=∠CBA,又∵E是内心,∴∠1=∠2=∠3=∠4.∴BE=AE;(2)∵∠BED=∠1+∠3,∠EDB=∠2+∠5,又∵∠5=∠4,∴∠BED=∠EDB,∴BD=D
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
连接BE,∵E为内心,∴AE,BE分别为∠BAC,∠ABC的角平分线,∴∠BED=∠BAE+∠EBA,∠EBA=∠EBC,∠BAE=∠EAC,∴∠BED=∠EBC+∠EAC,∠EBD=∠EBC+∠CB
∵AB=BC=AC=3,∴S△ABC=943,∵△ABC≌△A′B′C′,∴每个小三角形的边长与大三角形边长之比为:1:3,即相似比为:1:3,∴小三角形与大三角形面积之比为:1:9,∴每一个小三角形
知道I就是圆心(由三角形外心的定义),则△ABE和△ACB是Rt△,AB⊥BEAC⊥CE而AE是角BAC平分线所以BE=EC,直角三角形ABE,I为AE中点,有AI=BI=EI所以可证得BE=EC=I
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
由O点分别向三条边作垂线,垂足分别为E,F,G;则OE,OF,OG为三条弦的弦心距.由于三条弦长相等,故OE=OF=OG;∴O是△ABC角平分线的交点,故O是△ABC的内心
(1)证明:连接IB.∵点I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠IBD.又∵∠BIE=∠BAD+∠ABI=∠CAD+∠IBD=∠IBD+∠DBE=∠IBE,∴BE=IE.(2)在△BE
∵点O是△ABC的内心,∠ABC=50°,∠ACB=75°,∴∠OBC=12∠ABC=12×50°=25°,∠OCB=12∠ACB=12×75°=37.5°,∴∠BOC=180°-∠OBC-∠OCB=
因为E是内心,所以EA、EB分别为∠A和∠B的角平分线,即∠BAD=∠DAC=∠A/2,∠ABE=∠EBC=∠B/2所以BD=CD因为∠DAC和∠DBC对应同一段外接圆弧CD,所以∠DBC=∠DAC=
∵O是△ABC的内心,∴OB,OC分别平分∠ABC,∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB2=180°−50°2=65°,∴∠BOC=180°-65°=115°.故填115°.
(1)连接BE,∵E为内心,∴AE,BE分别为∠BAC,∠ABC的角平分线,∴∠BED=∠BAE+∠EBA,∠EBA=∠EBC,∠BAE=∠EAC,∴∠BED=∠EBC+∠EAC,∠EBD=∠EBC+
证明:∵三角形的内心是角平分线的交点∴∠BAD=∠CAD∴BD=CD(等角对等弦)∵∠CED=∠ACE+∠CAD∠DCE=∠BCE+∠BCD∠ACE=∠BCE∠CAD=∠BAD=∠BCD(等弧对等角)