如图,△abc中,点def分别是ab,bc,ca的中点,求证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:56:22
证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形
∵点D,E,F分别是各边的中点∴四个小三角形全等∴SΔDEF=SΔABC/4=80/4=20再问:能不能再详细点啊再答:∵D、E分别是AB、AC的中点∴DE∥BC且DE=BC/2∴ΔADE∽ΔABC且
4再问:过程再答:你知道勾股定理吧?设AD为x,AE=BF=2,BE=10-x,根据勾股定理,DE平方=EF平方,就可算出AD=4再答:你知道勾股定理吧?设AD为x,AE=BF=2,BE=10-x,根
1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)
ABCF是平行四边形,依照平行四边形定则,AF=BC,CF=AB,又AB=BC,所以AF=CF,所以ACF是等腰三角形,同理,AEB,DBC也是等腰三角形,又AE=EB=BD=DC=CF=FA=AE,
△DEF和△ABC相似,且相似比是1/2所以:其面积比是1/4,所以:S△ABC=4S△DEF=4*4=16(平方厘米)
因为△DEF是等腰直角三角形,所以DE=EF,∠DEF=90°,那么∠DEA+∠BEF=90°,因为△BEF是直角三角形,那么∠BEF+∠BFE=90°,所以∠DEA=∠BFE,另外,∠DAE=∠EB
【⊿ABC∽⊿EFD】证法1:∵点D、E、F分别是AB、BC、CA的中点∴DE,DF,EF均是⊿ABC的中位线∴DE=½AC,DF=½BC,EF=½AB即DE/DF/EF
AB=AC∠C=∠B……①∠DEC是外角,∠DEC=∠B+∠BDE因为∠DEF=∠B所以∠FEC=∠BDE……②又因BD=CE……③△BDE≌△CEF所以DE=EF
解过A点做BC的垂线交DF于点O交BC与点P.所以三角形ABC的面积为1/2AP×BC=S由于D,E,F是三遍的中点所以DE=1/2AC,DF=1/2BC,EF=1/2AB,AO=1/2AP所以三角形
因为AD平分∠BAC所以角BAD=角CAD在三角形AED和三角形ACD中AE=AC角BAD=角CADAD=AD所以三角形AED全等于三角形ACD(SAS)所以ED=CD所以角DEC=角DCE因为EC平
∵在等边△ABC中∴∠A=∠B=∠C=60°AB=BC=AC∵AD=BE=CF∴AB-AD=BC-BE=AC-CF即BD=CE=AF∵∠A=∠B=∠C=60°AD=BE=CFBD=CE=AF∴△ADF
证明:因为de平行ba所以角dec=角a又因为df平行ca所以角fde=角dec所以角fde=角a
证明:∵*ABC是等边三角形∴AC=AB,<CAB=<ACB=60度∵AC垂直于CD,BA垂直于AE∴<DCA=<EAB=90度∴<DAC=<ABE=30度在*DAC和*EBA中<DCA=<EAB(已
连结AEAF.角CAE=CBE角FEA=FCA所以角DCA+CAE+FEA=DCA+CBE+FCA=1/2(BAC+CBA+BCA)=90°于是:DAE+FEA=90°终于垂直.完工
∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴BC=2DF,AC=2DE,AB=2EF,故△ABC的周长=AB+BC+AC=2(DF+FE+DE)=20.故选C.
DECF是平行四边形,DE//CF,、即DE//AC因为AD=BD,D是AB的中点.DE是三角形ABC中,AB,BC边上的中位线,所以.E是BC的中点BE=CE
∠DFC=∠A+∠ADF(三角形一个角的外角等于另外两个角之和)∠DFC=∠DFE+∠EFC∵∠A=∠DFE=60∴=∠ADF=∠EFCDF=EF∠A=∠C所以△ADF≌△CFEAD=CF同理BE=C
大三角形ABC由小三角形AFE,BDF,DEF,DCE组成.由点D,E,F分别是△ABC的三条边的中点得知线段FE,ED,DF分别BC,AB,AC的一半.高为对应高的一半,所以三角形AFE,BDF,D