如图,△ABC为等边三角形,点O是三角形ABC角平分线的交点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:03:36
如图,已知,△ABC和△ADE均为等边三角形,BD、CE交于点F.

(1)证明:∵△ABC和△ADE均为等边三角形,∴AE=AD、AB=AC,又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,在△EAC和△DAB中,AE=A

如图,△ABC为等边三角形,点D,E,F分别在AB,BC,CA边上,且△DEF是等边三角形,求证:△ADF≌△CFE.

证明:∵△ABC为等边三角形,∴∠A=∠C=60°.∴∠ADF+∠AFD=120°.(2分)∵△DEF是等边三角形,∴∠DFE=60°,DF=EF.∴∠AFD+∠CFE=120°.∴∠ADF=∠CFE

如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上

解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D

已知:如图△ABC为等边三角形,点D,E,F分别在BC,CA,AB上,且AF=BD=CE,求证:△DEF是等边三角形

已知:△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°.已知:AF=BD=CE,∴FB=DC=EA.在△AFE和△BDF和△CED中,FB=DC=EA,AF=BD=CE,∠A=∠B=

如图,已知等边三角形ABC中E为AB边上任一点,△CDE为等边三角形,连接AD,则有AD‖BC,说明理由

证明:∵△ABC等边∴AC=BC,∠BAC=∠B=∠ACB=60°∵△CDE等边∴CD=CE,∠DCE=60°∴∠ACB=∠DCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴∠CAD=∠B=6

如图,△ABC为等边三角形,D.F分别是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE

1、在△ACD和△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2、1)四边形CDEF为平行四边形,理由如下设AB与ED交于G∵△ABC为正三角形∴AC=BC,∠B=∠A

如图,△ABC.△ADE均为等边三角形,BD.CE交于点F.

1)证明:∵三角形ABC,ADE为等边三角形,∴∠CAB=∠DAE=60,∴∠CAB+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∵AB=AC,AD=AE∴△BAD≌△CAE(SAS)∴BD=

如图 在等边三角形ABC中,点D,E,F分别在AB,BC,CA上,AD=BE=CF,△DEF为等边三角形

1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)

如图,△ABC为等边三角形,点M是射线BC上的任意一点.

∠BQM为定值.理由:如图①∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC∵BM=CN∴△ABM≌△BCN(SAS)∴∠BAM=∠CBN(全等三角形的对应角相等),∴∠BQM=∠BAQ+

如图,△ABC和△CDE都是等边三角形,且点A,C,E在一条直线上.试说明三角形MNC为等边三角形

∵△ABC、△CDE都是等边△,∴∠ACB=∠ECD=60°,∴∠BCD=60°,∴AC=BC,DC=EC,∠ACD=120°=∠BCE,∴△ACD≌△BCE﹙SAS﹚,∴∠DAC=∠EBC,即∠MA

如图,△ABC和△CDE都是等边三角形,且点A,C,E在一条直线上,连接MN,试说明三角形MNC为等边三角形

∵△ABC、△CDE都是等边△,∴∠ACB=∠ECD=60°,∴∠BCD=60°,∴AC=BC,DC=EC,∠ACD=120°=∠BCE,∴△ACD≌△BCE﹙SAS﹚,∴∠DAC=∠EBC,即∠MA

如图,△ABC是等边三角形D,E分别是BC,CA上的点,且BD=CE,以AD为边作等边三角形ADF.求证:

先证明△ABD≌△BCE因为AB=BC∠ABC=∠ACB=60°BD=CE所以AD=BE又等边△ADF所以AD=DF所以BE=DF因为△ABD≌△BCE所以∠BAD=∠CBE∠ADB=∠BEC∠C=∠

如图,△ABC为等边三角形,且CD=AE,AD与BE相交于点P

∠APE=60°BP=2PQ再问:过程有吗再答:(1)△ADC全等于△ABC,所以∠PAE=∠ABE,又因为∠PAE+∠APE+∠AEP=∠ABE+∠BAE+∠AEP=180°,所以∠APE=∠BAE

(2)如图,分别以△ABC的边AB,AC为边向外作等边三角形ABD和等边三角形ACE,CD与BE相交于点D,

(2)、∠AOD=∠AOE证明:过点D作AF⊥CD,AG⊥BE垂足为F,G先证:△ADC≌△ABE(SAS)得:AF=AG(全等三角形对应边上的高相等)也可由面积法得到这个结论∴AO平分∠DOE(角平

如图,△ABC,△DEC均为等边三角形,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM为等边三角形

AC=BC,CD=CE,∠ACD=∠ACB+∠BCD=60+∠BCD=∠ECD+∠BCD=∠BCE所以,△ACD≌△BCEAD=BEAM=AD/2=BE/2=BN,∠ACM=∠BCN,AC=BC△AC

如图,△ABC为等边三角形,D、F分别为CB、BA上的点,且CD=BF,以AD为一边作等边三角形ADE

易证△ACD≌△CBF∴AD=CF又等边三角形ADE∴AD=DE∴CF=DE且由内错角相等易证CF‖DE∴四边形CDEF是平行四边形

如图,△ABC为等边三角形,点D,E,F分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF

证明:∵等边△ABC∴∠A=∠B=∠C=60∵等边△ADEF∴∠DEF=∠EFD=∠FDE=60,DE=EF=DF∵∠DEC=∠B+∠BDE=60+∠BDE,∠DEC=∠DEF+∠CEF=60+∠CE

如图,△ABC为等边三角形,点DEF分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF

∠DFC=∠A+∠ADF(三角形一个角的外角等于另外两个角之和)∠DFC=∠DFE+∠EFC∵∠A=∠DFE=60∴=∠ADF=∠EFCDF=EF∠A=∠C所以△ADF≌△CFEAD=CF同理BE=C