如图,三角形abc与三角形啊的都是等腰直角三角形,角acb和角e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 15:43:51
如图,在三角形ABC中,AB等于2,BC等于4,三角形ABC的高AD与CE的比是多少?(利用三角形的面积)

根据三角形面积计算公式,用两个底乘以高除以2来算面积,这两个面积是相等的所以有AB*CE/2=BC*AD/22*CE/2=4*AD/2CE=2ADAD:CE=1:2

如图,三角形ABC的外角

过D分别作AE,AC,CF的垂线交E,Q,F.∵AD,CD是、∠EAC和∠FCA的平分线∴ED=DQ,DQ=DF,∴EQ=DF∴三角形BED≌三角形BDF(HL)∴BD平分∠ABC

如图,已知三角形ABC.只用直尺和圆规画一个与ABC全等的三角形,说明理由

先用直尺量出AB的长度并在纸上画出与AB等长的线段A'B',然后以A'、B'为圆心AC、BC的长为半径画两个圆,两圆其中一个交点就是要找的C',连接A'C'、B'C',所得的三角形A'B'C'即为要画

如图,Rt三角形ABC相似于Rt三角形EFG,EF=2AB,BD,FH是他们的的中线,三角形BDC与三角形FHG是否相似

证明:∵△ABC∽△EFG∴BC/FG=AC/EG∵CD=1/2AC,GH=1/2EG∴BC/GF=CD/HG∵∠C=∠G△BDC∽△FHG(两边成比例,夹角相等)周长比=1:2(周长比等于相似比)面

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

如图,CD,BE是三角形ABC的两条高,求证三角形AED相似于三角形ABC

证明:∵∠CDA=∠BEA=90°∵∠CAD=∠BAE∴△ABE∽△ACD∴AE:AD=AB:AC∴AE:AB=AD:AC又∵∠EAD=∠BAC∴△ADE∽△ACB

如图三角形ABC的顶点

点为x,4可求x得b点坐标得oc所以用梯形面积解决面积问题

如图,三角形ABC,三角形DEF均为正三角形,D,E分别在AB,BC上,请找出一个与三角形DBE相似的三角形并证明.

角AGD=角FGH,角GFH=角DAG=60度,所以角GHF=角ADG即ADG与GFH相似又角ADG+角BDE=120度,角FGH+角GHF=120,所以角BDE=FGH即证明了BDE与AGD,GFH

如图,三角形ABC.BP,CP是三角形ABC的外角平分线,求角A与角P的关系

相等再答:没让写证明就别写再问:让写证明了。。。再答:设角A为x度或直接使用。我没空呃作业还有不少。。。

如图,已知三角形ABC,用尺规作一个三角形,使作出的三角形与三角形ABC相似并且相似,

已知ΔABC,求作:ΔADE,使ΔADE∽ΔABC,且AD:AB=2:1. 作法:1、延长AB,在射线AB上截取BD=AB,2、延长AC,在射线AC上截取CE=AC,3、连接DE,则ΔADE

如图,三角形ABC中,DC:DB=EA:EC=FB:FA=1:2,求三角形GHI的面积与三角形ABC的面积的比值.

过点E作EK平行于CB交AD于点K.则有.Ek\DC=EA\AC=1\3,因为.DC\DB=1\2,所以.EK\DB=1\6,因为.EK平行于BC,所以.EH\HB=EK\DB=1\6,所以.HB\B

如图,三角形ABC和三角形DEC都是等腰直角三角形,阴影部分是正方形,三角形ABC与三角形DEC的面积比是______.

如图:S阴影=12S1,S阴影=49S2,因为12S1=49S2,则:S2:S1=12:49=9:8;故答案为:9:8.

如图,三角形ABC中,AB=2,BC=4,三角形ABC的高AD与CE的比是多少?(提示:利用三角形的面积公式

三角形ABC的高AD与CE的比是1:2三角形的面积=1/2×BC×AD=1/2×AB×CE即:1/2×4×AD=1/2×2×CEAD:CE=1:2

如图,在三角形ABC中,AD BE BF分别为三角形ABC三角形ABD三角形BCE的中线,三角形ABC面积12,求三角形

ADBEBF分别为三角形ABC三角形ABD三角形BCE的中线三角形BCD的面积=三角形ABC的面积的个一半=6三角形BCE的面积=三角形BCD的面积的个一半=3三角形BEF的面积=3