如图,三角形abc和三角形ade均为等腰三角形,且AB=AC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:52:51
如图,画出三角形abc的中线ad,高cf和角平分线be

中线:作bc的中点d,连接ad;高:过c点作ab的垂线,交ab的延长线于f,连接cf;角平分线:作角b的二分之一角交ac于点e,连接be

如图,AD是三角形ABC的中线,求证

证明:∵三角形任意两边之和大于第三边∴AD+BD>AB,AD+DC>AC两式相加得:2AD+BD+DC>AB+AC∵D是BC中点∴2BD=BD+DC∴2AD+2BD>AB+AC∴AD+BD>二分之一(

如图,己知三角形ABC和三角形ADE都是等腰三角形,AB=AC,AD=AE,且角DAB=角EAC,求证,三角形ABC∽三

你题目肯定搞错了,这两个三角形不可能相似我们原来都是证明DE∥BC的.  证明:∵∠B=∠C,AB=AC,∠DAB=∠EAC∴△ABF全等于△ACG(ASA)∴AF=AG,即△AFG也是等腰三角形∴∠

已知,如图,在三角形ABC中,AD,AE分别是三角形ABC的高和角平分线.

方法一:∠DAE=1/2*(∠C-∠B)90°=∠DAE+∠AED=∠DAE+∠EAC+∠C=∠DAE+1/2*∠BAC+∠C=∠DAE+1/2*(180°-∠A+∠C)+∠C整理得∠DAC=1/2(

已知:如图,三角形ABC中,AD=DB,角1=角2,求证:三角形ABC相似三角形EAD

证明:因为AD=BD∴∠B=∠1∵∠ADC=∠B+∠1∴∠ADC=2∠1∵∠1=∠2∴∠BAC=2∠1=∠ADC∵∠C=∠C∴△ACD∽△BCAE还是不清楚

如图:已知B、C、D在一条直线,三角形ABC和三角形CDE为等边三角形,求证AD=BE

∵△ABC和△CDE为等边三角形,∴AC=CB,CD=CE,∠ACB=∠DCE=60°,又BCD在一条直线上,∴∠ACD=∠BCE=∠DCE+∠ACE=∠ACB+∠ACE,∴△ACD≌△BCE(边角边

如图,已知三角形ABC和三角形BDE都是等边三角形,求证AD=CE

△ABC和△BDE都是等边三角形∴∠ABD=∠CBE=60AB=BCBD=BE(边角边相等)∴△ABD全等于△CBE∴AD=CE

如图,在三角形ABC中,AD、BE、BF分别为三角形ABC、三角形ABD、三角形BCE的中线,且三角形ABC的面积为12

结果是3△BEC面积是△BAC的一半,即是6(两三角形同底BC,可分别过A、E向BC做高,E为中点,则高的比是2:1,面积同高比)△BEF面积=△BCF面积=½△BEC面积=3(由B做三

已知:如图,AD,AE分别是三角形ABC和三角形ABD的中线.

∵AD为△ABC的中线,AE是△ABD的中线,∴BD=CD,BE=DE,∴BE=1/2BD,BD=1/2BC;又∵AB=BD,∴BE=1/2AB,AB=1/2BC,∴BE/AB=AB/BC=1/2,∠

如图三角形ABC和三角形ADE是等边三角形,AD是BC边上的中线,求证BE等于BD

等下再答:∵△ABC和△ADE是等边三角形∴AD=AE,AB=AC∠BAC=∠DAE=60°∠BAD+∠DAC=∠EAC+∠DAC∴∠BAD=∠EAC(等式的性质)在△BAD和△CAE中AD=AE∠B

如图,AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高,求证:AD垂直平分EF

证AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高DE=DF∠DEA=∠DFA=90°AD=AD   △AED≌△AFD    AE=AF  AD是三角形ABC的角平分线 

如图AB=AD,cB=cD,三角形ABC和三角形ADC全等吗?为什么?

全等再答:共用了AC再答:三边全等可证明三角形全等再问: 再问:给你个阿狸

、如图在三角形ABC中,AD是中线,

延长AD到E,使DE=ADABD全等于CEDCE=3AE=4AC=5所以角AEC=90度DE=2CB=2CD=2倍的根号13

如图,在三角形abc中,ad是高

(1)直角三角形,斜边中线等于斜边的一半,周长=DFA+AED=CA+AB=18(2)EF//BC,AD垂直于BC,所以EF垂直于AD

如图,已知三角形ABC全等三角形A‘B'C',AD.A'D'分别是三角形ABC和三角形A'B'C'的高,试证明AD=A'

考点:全等三角形的判定与性质.专题:证明题.分析:根据全等三角形的判定:三组对应边分别相等的两个三角形全等(SSS);有两边及其夹角对应相等的两个三角形全等(SAS);有两角及其夹边对应相等的两个三角

已知:如图,AD平行CB,AD=CB,求证:三角形ABC全等三角形CDA

AD平行CB,AD=CB,求证:三角形ABC全等三角形CDA证明:∵AD∥BC,∴∠2=∠3,在△ABC和△CDA中,∠1=∠4AC=CAAD=CB,∴△ABC≌△CDA(边角边).

如图,在三角形ABC中,AD BE BF分别为三角形ABC三角形ABD三角形BCE的中线,三角形ABC面积12,求三角形

ADBEBF分别为三角形ABC三角形ABD三角形BCE的中线三角形BCD的面积=三角形ABC的面积的个一半=6三角形BCE的面积=三角形BCD的面积的个一半=3三角形BEF的面积=3