如图,圆O的两天弦AB,CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:54:17
1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠
∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚
作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE
连接OM,OM交AB于N,因为CD切圆于点M,所以,CD⊥OM,因为CD‖AB,所以,AB⊥OM,那么△MNA和三角形MNB全等,所以AM=BM
连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD
只差一点!分别作弦AB、CD的弦心距,设垂足为E、F,∵AB=30cm,CD=16cm,∴AE=12AB=12×30=15cm,CF=12CD=12×16=8cm,在Rt△AOE中,OE=√(OA^2
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
作OF垂直AB,则AB=BF=8.5,EF就是点O到CD的距离为4.5设秋千的固定点为A,最低点为B,最高点为C、D,连接CD交AB于O则OC=OD=4m,OB=1.3-0.3=1m,设秋千绳长为x,
连接AD设角BAD为1,角CDA为21对应弧为:BD2对应弧为:AC弧AC+弧AD=弧CD弧BD+弧AD=弧AB又因为:弦AB=弦CD所以对应:弧AB=弧CD所以有弧BD=弧AC所以角1=角2所以三角
1.因为圆O所以OC=ODOA=OB而E,F是中点OF=OFOC=ODCF=DF所以三角形OFC与三角形OFD全等(同理三角形OEA与三角形OBE全等)所以∠OEA=∠OFC=90°连接EF因为AB=
解过O作OF⊥AB交于F,交CD于G,连接OB,OD∵OF⊥ABAB//CD∴OG⊥CD∵O是圆心∴AF=FB=15,CG=GD=8(垂径定理)∵OB=OD=17勾股定理OF=8OG=15∴AB,CD
连接OB,OC,OAB和OAC两个等腰三角形全等,所以AB=AC,进而弧AB=弧AC
∵CD是⊙O的直径,AB⊥CD∴AE=BE∵AB=10∴AE=5设OA=R∴OE=R-1根据勾股定理:R²=5²+(R-1)²解得R=13∴CD=2R=26
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
连接OC∵AB为圆O的直径,弦CD⊥AB于E∴CE=½CD∵AB=20,EB=2∴OC=OB=10,OE=8∴OC²=CE²+OE²∴CE=√﹙100-64)=