如图,在Rt△ABC中,∠BAC=90°,∠ACB=30°,AD是BC边上的点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:33:42
如图 在rt△abc中 ∠c=90,ac=6,bc=8 点EF同时由AB出发,分别沿AC,BA方向向点CB移动

一、过F点作FG⊥AC;AC=6,BC=8;∠C=90°;可得AB=10;可得:AG/AC=(AB-BF)/AB;即AG=0.6(10-BF);FG/BC=(AB-BF)/AB;即FG=0.8(10-

如图,在RT△ABC中,∠BAC=90°,E,F分别是BC,AC的中点,延长BA到点D,使AD=12AB.连结DE,DF

⑴取AB的中点G,连结ED、EA、EF.由△AGE≌△DAF得出DF‖AE;由△CEF≌△FDA得出EF‖AD.所以AEFD是平行四边形,AF与DE互相平分⑵DF=AE=1/2BC=2

如图 在rt△abc中 ∠bac=90度,ca=ba,角dac=角dca=15度,求证:ba=bd

如图作DE垂直BC,交BC于F.并延长一倍到E.使DF=EF.连接CE,AE,BEBC是DE垂直平分线,CD=CE,BD=BECAB是等腰直角三角形∠ACB=45°∠DCF=45°-15°=30°;等

如图,在Rt△ABC中,∠C=90°,BC=30cm,AC=40cm,点D在线段BA上从点B出发,向终点A运动.

在Rt△ABC中,∠C=90°,BC=30cm,AC=40cm由则勾股定理得AB=50cm(1)当D运动到线段AB的中点时,由直角三角形斜边中线等斜边一半得CD=AB/2=50/2=25(2)在(1)

如图在RT△ABC中,∠BAC=90°,D是AC上一点,∠ABD=∠C,直线EF过点D与BA的延长线相交于F,且EF⊥B

1)∵∠ABD=∠C∴△ABD∽△ACB∵∠ABC是△ACB与△BEF的公共角,又∠BEF、∠BAC均为直角,∴△EFB∽△ACB同理△ADF∽△EFB,△EDC∽△ACB,∴△ABD∽△ACB∽△E

如图,在Rt△ABC中,∠BAC=90°,E,F分别是BC,AC的中点,延长BA到点D,使AD=12AB.连接DE,DF

(1)证明:连接EF,AE.∵点E,F分别为BC,AC的中点,∴EF∥AB,EF=12AB.又∵AD=12AB,∴EF=AD.又∵EF∥AD,∴四边形AEFD是平行四边形.∴AF与DE互相平分.(2)

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图,在Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于E,BA,CE的延长线

证明:(1)因为∠BAC=90º,AB=AC,BD平分∠ABC,所以∠EBC=∠EBF=π/8又因为BE⊥CF,所以∠EBC+∠BCE=90º,∠EBF+∠EFB=90º

已知:如图在RT△ABC中,

过B点作AC的平行线L1过D点作BC的平行线L2,交L1于点G,交AE于J过点E作AC的平行线L3,交L2于点H连接AG交L3于点I则AD=BC=GD,GH=BE=DC=HE那么角AIE=180°-角

如图,在RT△abc中,∠bac=90°,ad⊥bc,e是ac的中点,连结de和ba的延长线交与点f.求证ab/ac=f

证明:∵AD⊥BC∴⊿ADC是直角三角形∵E为AC的中点,即为斜边中线∴DE=CE∴∠C=∠CDE在DB上截取DG=CD,连接AG∵⊿ADC和⊿ADG是直角三角形,且AD=AD,DC=DG∴⊿ADC≌

已知如图,在Rt△ABC中,∠BAC=90°AB=AC ,CF垂直于BD,交BD的延长线于点E,交BA的延长线于点F.求

证明:∵∠BAC=90∴∠ABD+∠ADB=90,∠CAF=∠BAC=90∵∠CDE=∠ADB∴∠ABD+∠CDE=90∵CF⊥BD∴∠ACF+∠CDE=90∴∠ABD=∠ACF∵AB=AC∴△ABD

在线求指导:如图,在Rt△ABC中,

(1)证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,,

【二次函数】已知,如图在Rt△ABC中

这不难(1)∵a,b是方程x^2-(m-1)x+m+4=0的两根∴a+b=m-1①a*b=m+4②∴AB2=52=a2+b2=(a+b)2-2ab=(m-1)2-2(m+4)解得m1=6m2=-2(∵

已知:如图①,在Rt△abc中,∠C=90°,AC=4cm,AC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1

(1)当PQ//BC时,知三角形APQ相似三角形ABC,所以有2t:(5-t)=4:5,解得,t=10/7(2)过P作PD垂直AC于D,则三角形APD相似三角形ABC,所以AP:AB=PD:BC所以(

已知如图 在rt△abc中,∠BAC=90°,AB=AC,CF⊥BD,交BD的延长线于点E,交BA的延长线于点F,求证B

证明:∵∠BAC=90°∴∠ABD+∠ADB=90°∵∠CDE与∠ADB是对顶角∴∠CDE=∠ADB∴∠ABD+∠CDE=90°∵CF⊥BD∴∠ACF+∠CDE=90°∴∠ABD=∠ACF∵在△ABD

数学问题如图,在Rt△ABC中,∠A=90°,AB=8,AC=6,若动点D从点B出发,沿线段BA运动到点A为止,运动速度

(1)依题意得,BD=2x,AD=AB-BD=8-2x∵DE//BC∴AD/AB=AE/AC∴(8-2x)/8=y/6∴y=6-(3x/2)又y》0,∴x《4则y关于x的函数关系式为y=6-(3x/2

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于D,若E为BC中点,ED的延长线交BA的延长线于E,求证AB:BC

题中:求证错误,应为AB:BC=DE:BF,延长线于E,应为F,证明:由△BDC是直角三角形,E是BC的中点,∴DE=BE=CE,∴∠DEB=∠DBE,又∠F+∠DEB=90°,及∠FBD+∠DBE=

如图,在Rt△ABC中,

(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的