如图,在△ABC中,∠ACB=90°,BC的垂直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:03:28
如图,在△ABC中,∠ABC、∠ACB的角平分线相交于点O(

解题思路:根据三角形内角和,可求。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/

如图:已知在△ABC 中,∠ACB=90°AC=BC,BD平分∠ABC 求证:AB=BC+CD.

你这张图……既然还有辅助点……过AB作BE=BC交AB于E,则BE=BC,BD=BD,∠ABD=∠DBC则全等∠DEB=∠BCD=∠DEA=90°CD=ED又∠A=∠A,∠DEA=∠ACB所以,△AB

如图,在△ABC中,已知∠ABC=∠ACB,BD,CE分别是∠ABC,∠ACB的平分线,请说明BD=CE

证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE

如图,在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,AD=1,求△ABC的周长与面积.

过D做DE⊥BC于EAD=DE=1(角平分线到2边的距离相等,你证全等也行)B=45°BE=DE=1BD=√2AB=√2+1AC=AB=√2+1BC=√2+2△ABC的周长=√2+1+√2+1+√2+

如图,在△ABC中,∠A=∠ACB,CD是∠ACB的∠平分线,CE是△ABC的高

(1)∵∠CDB=∠A+∠ACD且CD平分∠ACB∴∠DCB=∠ACD因为∠A=∠ACB∴∠CDB=∠ACB+∠DCB又∵∠ACB=2∠DCB∴∠CDB=3∠DCB(2)∵CE是△ABC的高∠DCE=

如图,在Rt△ABC中,∠ACB=90°,AC=BC,∠CAD=∠BAD,

证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A

如图,在三角形ABC中,BI,CI分别平分 ∠ABC,∠ACB.

已知∠A=50°,那么∠ACB+∠ABC=130°,又BI,CI分别平分∠ABC,∠ACB,所以1/2(∠ACB+∠ABC)=65°那么在△BIC内,∠BIC=180°-65°=115°

如图,在△ABC中,IB、IC分别平分∠ABC、∠ACB

1因为∠ABC=50°,∠ACB=80°.所以∠IBC=25°,∠ICB=40°,那么∠BIC=1152因为∠A=50°所以∠B+∠C=130°,那么∠IBC+∠ICB=65°,所以∠BIC=1153

如图,在△ABC中,∠ABC=100°,∠ACB=20°,CE平分∠ACB,D为AC上一点,若∠CBD=20°,则∠CE

考虑三角形BDC中,EC是∠C的平分线,EB是∠B的外角平分线,所以E是三角形BDC的一个旁心,于是ED平分∠BDA.∠CED=∠ADE-∠DCE=1/2∠ADB-1/2∠DCB=1/2∠DBC=1/

已知如图在RT△ABC中,∠ACB=90°,CA=CB

证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠

如图,在Rt△ABC中,∠ACB=90°,DE为中位线,∠CEF=∠A,

(1)DE为中位线→DE‖BF→∠AED=90°→DE为三角形ACD的高线——aE为中点→DE为三角形ACD的中线——b综合a,b→三角形ACD为等腰三角形,AD=CD→∠A=∠ACD∠CEF=∠A→

如图,已知:在Rt△ABC中,∠ACB=90°,M是AB边的中点,CH⊥AB于H,CD平分∠ACB.

Rt△ABC中,∠ACB=90°,M是AB边的中点所以AM=CM=BM∠CAB=∠ACM∠CAB=90-∠ABC∠BCH=90-∠ABC所以∠CAB=∠BCH所以∠BCH=∠ACM有CD平分,∠ACB

如图,在△ABC中,∠ACB=90°,点E为AB中点,连接C

解题思路:要证明四边形ACEF是平行四边形,需求证CE∥AF,由已知易得△BEC,△AEF是等腰三角形,则∠1=∠2,∠3=∠F,又∠2=∠3,∴∠1=∠F,∴CE∥AF解题过程:答案见附件最终答案:

已知:如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O.

证明:∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB),在△OBC中,∠BOC=180°-(∠OBC+∠OCB

如图,在△ABC中,∠A=∠ACB,CD为△ACB的角平分线,CE是△ABC的高.

(1):∵在△ACB中:∠A=∠ACB又∵CD为△ACB的角平分线∴∠A=∠ACB=2∠ACD=2∠DCB∵∠A+∠ACD=∠CDB2∠ACD+∠ACD=∠CDB3∠ACD=∠CDB∴∠CDB=3∠D

如图,在△ABC中,BD、CD分别是∠ABC、∠ACB的平分线,BP、CP分分别是∠ABC、∠ACB的外角平分线

1、角D=110度,角P=70度角A=40度,角B+角C=180-40=140度,1/2∠B+1/2∠C=70°,在△BDC中,∠D=180-70=110°∠B的外角+∠C的外角=360°-140°=

如图,在△ABC中,∠ABC,∠ACB的角平分线相交于点O.

(1)∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=180°-50°=130°,∵∠ABC,∠ACB的角平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB

如图,在△ABC中,∠ABC,∠ACB的平分线交于点D,连接AD,求证:∠BAD=∠CAD

【利用角平分线定理及其逆定理:角平分线上的点到角两边的距离相等;到角两边距离相等的点在角平分线上】过D点分别作DE⊥BC,DF⊥AB,DG⊥AC∵BD平分∠ABC∴DE=DF∵CD平分∠ACB∴DE=

如图,已知在△ABC中,角ACB=90°,M为AB中点,DM⊥AB,CD平分∠ACB求证MD=AM

CD平分角ACB,角ACB=90度,则角ECB=45度M为AB中点,则AM=CM=BM,角MCB=角MBC则角MCE=角MCB-角ECB=角MBC-45度角DEM=角CEB=180-角ECB-角MBC