如图,在△abc中,已知d是bc的中点,AD平分角EDC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:10:28
∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN
AD=CDDAC=C设DAC=C=xADB=2xAB=BDADB=BAD=2xBAC=DAC+BAD=3xAB=ACB=C=xBAC+B+C=5x=180x=36B=C=CAD=36故ABC相似DAC
设∠B为X°.因为AB=AC,所以∠B=∠C=X°.同理,∠B=∠BAD=X°.所以∠ADC=∠B+∠BAD=2X°.因为CA=CD,所以∠CAD=∠ADC=2X°.因为:∠B+∠A(∠BAD+∠CA
证明:∵∠A+∠ACB+∠B=180°,∠1+∠2=∠ACB∴∠A+∠1+∠2+∠B=180°∵∠A=∠2,∠1=∠B∴2(∠1+∠2)=180°∴∠1+∠2=90°即∠ACB=90°∴△ABC是直角
(1)三角形ADC是直角三角形.因为∠ACD=∠B∠B+∠A=90°所以∠ACD+∠A=90°所以∠ADC=90°所以三角形ADC是直角三角形.(2)应用了直角三角形两锐角和为90°两锐角之和为90°
∵∠A+∠B=90°(余角的定义)∠ACD=∠B(已知)∴∠A+∠ACD=90°(等量代换)∴∠CDA=180°-90°=90°(三角形内角和)∴CD⊥AB(垂直的定义)
hello,我在{求解答网}帮你找到了几乎一模一样的原题,只不过数字大小不一样、(如果帮到你啦,记得柴呐我啊…………)
证明:在△ABD中∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD在△ABC中有∠BAC=∠BAD+∠DAC由题意可得知:∠BAC=∠ADC∴∠B+∠BAD=∠BAD+∠DAC∴∠B=∠DAC
解题思路:根据等腰三角形三线合一的性质可得∠DAC=1/2∠BAC=20,∠ADC=90从而可得∠CDE解题过程:
证明:∵AB=AC∴∠B=∠C∵DE⊥AB,DF⊥AC∴∠BED=∠CFD=90∵DE=DF∴△BDE≌△CDF(ASA)∴BD=CD∴D是BC的中点
我来回答∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD.∵∠BDE=∠CDF,BE=CF,∴△BED≌△CFD.∴BD=CD.∴AD是△ABC的中线.
①∵∠ACD=½90º=45º(已知);∠OCD=½90º=45º(已知等腰直角三角形OCD),∠ACO=90º.∴AC是⊙O的切
ac=a'c'cd=c'd'且cd与c'd'均为高所以角a=角a'角acd=角a'c'd'又因为角a‘b'c’=角abc所以角acb=角a'c'b'所以△ABC≌△A’B’C’第二题连接bc说明abc
∵在三角形ABC中,∠B=∠C,∴三角形ABC是等腰三角形又∵在三角形ADE中∠ADE=∠AED,∴三角形ADE也是等腰三角形∵三角形ABC与三角形ADE共有一个顶角∠A,而且E分别是AB,AC上的点
E、F是所在边中点,所以EF//BC三角形AHB是直角三角形且F是AC中点,则FH=1/2AB=FB又D、E是所在边中点,所以DE=1/2AB且DE//FB所以DE=HF且DE不平行于FH由DE不平行
∵∠A=∠ADM=30°,∴MA=MD.又MG⊥AD于点G,中的结论成立.如图9,在Rt△AMG中,∠A=30三角形DGM和NHD相似所以DH=(根号3)MGAG=(
证明:在BC上取一点E,使得CE=AC因为CD=CD,角ACD=角DCE所以三角形ACD全等于三角形ECD所以AD=DE,角A=角DEC因为角DEC=角B+角BDE,角A=2角B所以角B=角BDE所以
∵在△ABC中,BE,CF是高∴∠BFC=∠BEC=90°∵D是BC的中点∴DF=½BC=DE(直角三角形斜边上的中线等于斜边的一半)∵G是EF的中点∴DG⊥EF﹙等腰三角形三线合一性质)明
∵AD=BD,AE=CE∴DE‖BC同理EF‖AB∴四边形BFED是平行四边形∴∠FED=∠B=45°