如图,在△ABC和△bad中,BC=ad
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:25:04
∵△ABC∴∠B+∠C+∠BAC=180°∵∠B=70°∠C=40°∴∠BAC=70°∵AD是∠BAC的角平分线∴∠BAD=∠DAC=35°∠ADC=∠B+∠BAD=105°
在三角形ABC中,因为角B=70度角C=40度所以角BAC=180度-角B-角C=70度因为AD平分角BAC所以角BAD=角DAC=35度所以角ADC=角B+角BAD=70+35=105度
(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴
证明:在Rt△ABC和Rt△BAD中,AB=BAAC=BD,∴Rt△ABC≌Rt△BAD,∴∠BAD=∠ABC,∴AE=BE.
△ABD∽△ACE你已经证明△ABC∽△ADE那么得AB/AC=AD/AE∠BAD=∠CAE△ABD∽△ACE(边角边)
(1)在BC上取一点P,使PC=AB,连接FP由AE=CF,∠BAD=∠ACB,∴△BAE≌△PCF(SAS)∴BE=PF∠ABE=∠FPC又∵BE平分∠ABC,∴∠ABE=∠EBC∴∠EBC=∠FP
证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A
AB=AD,∠BAD=36°∴∠B=∠ADB=72°又AD=DC∴∠C=∠DAC又∠C+∠DAC=∠ADB=72°∴∠C=36°
证明:延长AM到F,使MF=AM,连接BF,CF(如图)∵BM=CM,AM=FM,∴四边形ABFC为平行四边形.∴FB=AC=AE,∠BAC+∠ABF=180°又∵∠BAC+∠DAE=180°,∴∠D
根据您的问题,我做出如下回答:因为:∠BAD=∠CAE所以:∠BAD+∠DAC=∠CAE+∠DAC即:∠ABC=∠DAE又因为:∠ABC=∠ADE所以相似.
证明:∵四边形ABCD是菱形∴AD//BC(菱形对边平行)∴∠B+∠BAD=180°∵∠BAD=2∠B∴3∠B=180°∠B=60°∵AB=BC(菱形邻边相等)∴△ABC是等边三角形(有一个角是60°
(1)证明:∵∠AEC与∠BED是对顶角,∴∠AEC=∠BED,在△ACE和△BDE中,∠AEC=∠BED∠C=∠D=90°AC=BD∴△ACE≌△BDE(AAS),(3分)∴AE=BE;(4分)(2
在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形
过D作DE垂直AB于E,DF垂直BC于F,DM垂直AC于M∵DE⊥AB于EDF⊥BC于FDB平分∠ABC∴DE=DF同埋DM=DF∴DE=DM又∵DE⊥AB,DM⊥AC∴DA平分∠BAC
相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽
∵AB=AD∠BAD=32°∴∠ADB=∠ABD=(180º-32º)/2=74º∵AD=DC∠ADB=∠DAC+∠DCA∴∠DAC=∠DCA=∠ADB/2=37
第一题:因为∠B=∠C=90°,所以△ABE和△ACD都是直角三角形,又因为AD=AE,AB=AC所以△ABE全等于△ACD(HL定理)∠BAE=∠CAD(三角形全等,对应角相等)∠BAE-∠DAE=
∵∠1=∠2,∴∠3=∠1+∠2=2∠1=∠4,∴2∠3+∠CAD=2∠1+2∠2+∠BAC-∠1=4∠1+63°-∠1=3∠1+63°=180°,∴∠1=39°=∠2,∠3=∠4=78°∴∠DAC=
因为∠BAD=∠CAE,所以∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE.在△ABC和△ADE中,因为AC=AE,∠C=∠E,∠BAC=∠DAE,由角边角定理,△ABC≌△ADE.
(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(