如图,在园o中AB为直径,AD为弦,过点B的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:37:57
为了方便求解,添加三条辅助线第一条就是DE,第二条是OE,第三条是过点O做AB的垂线交AB于H,连接OH因为图形对称,所以求出左半个阴影部分的面积,乘以二就可以了那么这部分阴影部分的面积就是解题的关键
证明:连接AC ∵∠AOD=∠BOC ∴弧AD=弧BC ∵弦CE‖AB ∴∠BAC=∠ACE ∴弧BC=弧AE ∴弧AE=弧AD
(1)∵直角梯形ABCD,AD∥BC,∴PD∥QC,∴当PD=QC时,四边形PQCD为平行四边形;∵AP=t,CQ=2t,∴8-t=2t解得:t=83,∴当t=83s时,四边形PQCD为平行四边形.(
/>1、设AC=3X∵AC:BC=3:4,AC=3X∴BC=4X∵直径AB∴∠ACB=90∴AC²+BC²=AB²∴9X²+16X²=100X=2(X
假设直线BC不是圆O的切线作OH垂直于BC于点H,在直线OH上取OE=OA=OD,连BE,CE所以三角形OAB全等于三角形OBE,三角形OCD全等于三角形OCE所以BE+CE=AB+DC>BC与题意矛
(1)、连接OE.由AB∥DC,AD=BC可得∠A=∠B由于AD为直径,所以DE⊥ABOD=OE所以∠ODE=∠OED∵∠FEB+∠DEF=90°∠OED+∠DEF=90°∴∠FEB=∠OED=∠OD
直线cd与圆O的位置关系是相切.证明:在直线cd上取中点,作e,连接oe因为o是ab的中点而e是cd的中点所以2oe=ad+bc因为ad+bc=ab所以2oe=ab+bc=ab所以oe=oa=ob由此
依然冷枫Judy,(1)求圆心O到CD的距离即为平行四边形CD边的高过A做CD的垂线AERT三角形ADE中sin(角D)=AE/ADsin(60度)=AE/m则AE=(m√3)/2即圆心O到CD的距离
过O作平行四边形ABCD边CD上的高OE,由面积法,平行四边形ABCD面积S=AD*DC*sin60=5√3m,平行四边形ABCD面积S=CD*OE,当CD与⊙O相切时,OE=5,所以5√3m=10*
∵AB为直径∴BD⊥AC∴∠ABD=90°∵BC为切线∴AB⊥BC又∵AD=DC∴BD平分∠ABC即∠ABD=∠DBC=45°
是求,求证,∠EAF+∠EDF=180°?∵AD为直径.∴∠AED=∠AFD=90°.(直径所对的圆周角为直角)∴∠AED+∠AFD=180°,∠EAF+∠EDF=360°-(∠AED+∠AFD)=1
连接BD交OC于E,由于AD//OC,所以BE/DE=Bo/AO=1,所以E是BD中点,因为三角形BDO是等腰三角形,所以OC垂直于BD,即使OC是BD的垂直中心线,所以CB=BD,所以三角形BCO全
AD平行于CB∠oad=90度因为M点是切点∠OMD也=90度因为是个圆,OA=OM,就是半径,OD共用,边角边三角形OAD全等于OMD得出AD=DM同理可证明BC=CM所以AD+BC=DM+CM=C
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
(1)证明:连接OE,∵BC与⊙O相切于点E,∴OE⊥BC,即∠OEB=90°.∴∠OEB=∠ACB=90°.∴OE∥AC.∴∠F=∠OED.∵OE=OD,∴∠ODE=∠OED.∴∠F=∠ODE=∠A
连接BD,则角ADB=90度角ABD=角ADC=角D(同为BDC的余角)在Rt△ADB中,sinABD=AD/AB=2*5(1/2)/5cosABD=(1-cos^2ABD)^(1/2)cosABD=
当PQ与圆O相切于G时,如图:AP=GP=T*1=T;BQ=GQ=BC-CQ=26-2*T;OG=OA=OB=R=4根号6/2=2根号6;易证:OP是角AOG的角平分线;OQ是角BOG的角平分线;所以
解(1)∵AD//BC,∴只要QC=PD,四边形PQCD为平行四边形,此时,有3t=24-t,解得t=6.即当t=6秒时,四边形PQCD为平行四边形,同理,只要PQ=CQ,PD≠QC,四边形PQCD为
∵AD是直径,∴∠AED=∠AFD=90°,根据四边形AEDF内角和为360°,得∠EAF+∠EDF=180°.⑵β=1/2α.证明:∵BD=PD,AD⊥BP,∴AB=AP,∴∠DAB=∠DAP,∵∠
1,设AE=x,DC=DE=y;AD为直径,∠DEA=90°,AD=BC,所以AB=DC+2AE=y+2x=DB,EB=y+x;AB=BD,AB²=BD²,(y+2x)²