如图,在正方形ABCD中,E为AD中点,EF⊥BC交AB于F,连接
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:12:00
正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP&
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
1.2.3.都正确1.作ER⊥CD于R,MS⊥BC于S易证Rt△EFR≌Rt△MGS∴EF=MG2.AE=√3EM=2FM=2MG=4∴FG=2√53.当E在A点时,P为正方形中心当E运动到B点时,P
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.又EC=EC,∴△BEC≌△DEC.(2)由(1)可知:△BEC≌△DEC∴∠BEC=∠DEC=1/2∠BED=70°∴∠AE
BEFC=(A+B)/2*(A-B)BEF=(A-B)*B/2BFG=(A+B)/2*B-A*B/2
(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛
不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+
“e,f,g分别为BD,AD中点”有三个点怎么只给两条边?题目写清楚再问:噢不好意思少打了一条边是E、F、G分别为DB、DC、AD的中点再答:EF和BC平行,BC属于面VBC,所以EF平行于面vbc因
(1)连结BD,AC交于O.∵ABCD是正方形,∴AO=OC,OC=12AC连结EO,则EO是△PBD的中位线,可得EO∥PB∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC(2)∵PA⊥平面
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A
十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P
设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
1连接BD交AC于点O,则可知,O是BD的中点.所以EO是三角形BDD1的一条中位线.所以有,EO//BD1因为EO∈平面EAC,DB在平面EAC外,所以,BD1//面EAC2连接B1O,由于B1C=
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG