如图,在等腰△abc中,ab=ac,以ab为直径的圆o交BC于D,过点c作cf

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:36:01
1.如图:在等腰△ABC中,AB=AC=5,BC=6.求:sinB,cosB,tanB.

过A作AD⊥BC于D,因为△ABC为等腰三角形,D平分BC.所以DB=3.AD=√(AB^2-DB^2)=4所以sinB=AD/AB=4/5cosB=DB/AB=3/5tanB=AD/DB=4/3

如图,在等腰△ABC和等腰△EDF中,AB=BC,DE=DF,∠ABC =∠EDF=120°,M是EF,AC的中点.则A

联结BM,DM则BM⊥AC,DM⊥EF∵∠BMA=∠DMF=90∴∠BMA+∠AMD=∠DMF+∠AMD∴∠BMD=∠AMF∵,∠ABC=∠EDF=120°∴∠A=∠F=30AM/BM=FM/DM=√

相似三角形:如图,在等腰RT三角形ABC中,AB=1,∠A=90°

因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A

如图,在△ABC中,∠B=30°,AC=√2,等腰直角三角形ACD的斜边AD在AB边上,求BC的长

根据正弦定理,BC/sin45°=AC/sin30°∵AC=√2∴BC=sin45°·AC/sin30°=√2·√2/2÷1/2=2

如图,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中

如图②,恕我眼拙,点D在AB边上么?题目有问题啊还有,BF=CD,且BF⊥CD∵ABC等腰直角△,+O为AB中点∴BO=CO=AO,角BOF=角COD同理:FO=OD=OE∴△BOF≌△COD∴BF=

如图,在∠ABC中,∠B=30°,AC=2,等腰直角△ACD斜边AD在AB边上,求BC的长.

过点C作CE⊥AB交AB于点E,已知等腰直角△ACD,∴△AEC是等腰直角三角形,设CE=x,则2x2=(2)2,∴x=1,即CE=1,在直角三角形CEB中,∠B=30°,∴BC=2CE=2.

如图,在等腰△ABC中,AB=AC=10,BC=12,求sinB,cosB的值

过点A作BC的垂线交BC于点D,因为AB=AC,AD垂直于BC所以AD为BC的垂直平分线所以BD=1/2BC=6所以AD=8所以sinB=AD/AB=8/10=4/5cosB=BD/AB=6/10=3

如图,在等腰直角三角形ABC中,

证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH

如图,在等腰△ABC中,AB=AC=20,DE垂直平分AB.

(1)∵在等腰△ABC中,AB=AC=20,DE垂直平分AB,∴AD=BD,∴AD+CD=BD+CD=AC=20,∵△DBC的周长=(BD+CD)+BC=35,即AC+BC=35,∴BC=35-AC=

已知如图在△ABC中,AB=AC,BD,CE是这个三角形的底角的平分线.求证四边形EBCD是等腰梯形

因为∠ABC=∠ACB=2∠ECB=2∠DBCBC=BC所以△DBC≌△EBC所以BE=CD因为AB=ACBE=CD所以△ADE是等腰三角形因为∠ABC=1/2(180°-∠A)∠AED=1/2(18

如图,在等腰直角三角形ABC中.

连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5

(2014•吴江市模拟)如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交底边BC于D.

(1)证明:连接AD.∵AB为⊙O的直径,∴AD⊥BC,又AB=AC,∴BD=CD;(2)DE为⊙O的切线.理由如下:连接OD.∵OA=OB,BD=CD,∴OD是△ABC的中位线,∴OD∥AC.在直角

如图,在等腰Rt△ABC中,AC=BC.以斜边AB为一边做等边△ABD,使点C,D

因为△ABC为等腰直角三角形,且△ABD为等边三角形所以容易看出CD为∠ADB的角平分线,所以∠ADC=30°又△CDE为等边三角形,所以∠ADE=30°,那么AD为∠CDE的角平分线因为△CDE为等

已知:如图,在△ABC中,AB=AC,BD,CE是角平分线.求证:四边形EBCD是等腰梯形.

先用角边角证明CEB与BDE全等得BE=CD,AB=AC,可得AD=AE,DE平行BC,EBCD是等腰梯形

(2012•宁德)某数学兴趣小组开展了一次活动,如图1,在等腰直角△ABC中,AB=A

1)证明:如图1,∵∠BAC=90°∴∠BAD+∠DAM+∠MAE+∠EAC=90°∵∠DAE=45°∴∠BAD+∠EAC=45°∵∠BAD=∠DAM∴∠BAD+∠EAC=∠DAM+∠EAC=45°∴

如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=______.

∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°-72°=18°.故答案为:18°.

如图,在等腰△ABC中,AB=AC,D是AB上的动点,作等腰△EDC∽△ABC.

证明:(1)∵△EDC∽△ABC(1分)∴BCDC=ACEC,∠ECD=∠ACB(2分)∴∠ACE=∠BCD(1分)∴△ACE∽△BCD(2分);(2)根据(1)得∠EAC=∠B(1分)∵AB=AC(

如图,在等腰直角三角形ABC中

反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD