如图,在锐角三角形ABC中,bc,ce为高求证b,c,d,e四点在同一个圆上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:00:37
证明:(1)以A点为顶点,做一条垂直于BC的高AD;∵AD=AC*sinC=bsinC∴S(△ABC)=1/2*BC*AD=1/2*absinC(2)三角形ABC的面积S=1/2absinC=1/2*
(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.∵S△ABC=48,BC=12,∴AM=8,∵DE∥BC,△ADE∽△ABC,∴DEBC=ANAM
可能繁了点,但绝对正确严密,无需讨论倒推:A,B为锐角,则sinA,cosB∈(0,1)即证(sinA)^2>(cosB)^2即证(sinA)^2+(sinB)^2>1,运用降幂公式即证1/2*(1-
因为A+B+C=π,所以C2=π2−(A+B2),又有sinA=223,A为锐角得cosA=1−89=13所以sin2B+C2+cos(3π−2A)=sin2A2−cos2A=1+cosA2−(2co
∵BE⊥AC,CF⊥AB∴∠AEB=∠AFC=90°∵∠A=∠A∴△ABE∽△ACF∴AE/AF=AB/AC∴AE/AB=AF/AC∵∠A=∠A∴△AEF∽△ABC
(1)由正弦定理:(2sinA-sinC)cosB=sinBcosC2sinAcosB-sinCcosB=sinBcosCsinBcosC+sinCcosB=2sinAcosBsin(B+C)=2si
1)y=√3x-1,BC所在直线的方程为y=1tan∠ABC=√3,∠ABC=60°所以:外接圆半径Rb=2RsinBR=AC/(2sin60)=√62)a与c的等差中项为3假设a>ca=6-cb^2
作法:作BAC的角平分线交BC边于点P,则点P就是所要确定的点.因为角平分线的性质告诉我们:角平分线上的任意一点到角的两边的距离相等,所以要作角平分线,而不是作线段的垂直平分线.
因为a>b>c所以sina>sinb>sinc由二倍角sina>sinb>sinc,sina^2>sinb^2>sinc^21-cos2a>1-cos2b因为角为钝角,所以平方后要变号cos2a^2>
GF平行且等于BC的1/2,所以GF//DEEF=1/2*AB=DG(三角形ADB为直角三角形,从直角到斜边中点的连线等于斜边的一半)所以四边形DEFG是等腰梯形.希望对您有所帮助如有问题,可以追问.
2对因为sinA>sinB>0cos2A=1-2(sinA)^2cos2B=1-2(sinB)^2所以cos2A
因为AC=A'C'AD=A'D,AD,A'D'分别是锐角三角形ABC和锐角三角形A'B'C'中BC,B'C'边上的高∠ADC=∠A'D'C'=90°所以BD=B'D' 同理DC=D'C′所以BC=B
由于有角平分线,求最值可利用对称啊!设N关于AD的对称点为R,由于为锐角三角形,则R必在AC上.MN=MR,并作AC边上的高BE,E在线段AC上.BM+MN=BM+MR>=BE由于面积为15,则AC边
若∠C=∠C′可证明:△ABC≌△A′B′C′证明:∵AB=A′B′,A′D′=AD∴RT⊿ABD≌RT⊿A′B′D′(HL)∴∠B=∠B′∵∠C=∠C′AB=A′B′∴△ABC≌△A′B′C′(AA
此题要证明AC<2AB ,那么最好就要创造一个与AB相等的线段.因为此题是一个锐角三角形,所以不可能在BC的延长线上取一与AB相等的线段(在三角形外部确实可以找到很多与AB相等的线段,
由题意可知BD垂直于AC,又是锐角三角形,则∠ABD为锐角.AB=ACAC=2BD所以COS∠ABD=0.5可以推出∠ABD=60度从而得到∠A=30度AB=AC所以∠ABC=∠ACB=75度所以∠D
√3tanA-tanB=1+tanAtanB√3tan(A-B)=1tan(A-B)=√3/3A-B=30A=30+BA再问:sin(A+B)=sinC0
/sinB=c/sinC证明作BC上的高AD在直角三角形ABD中AD=AB*sinB=c*sinB在直角三角形ACD中AD=AC*sinC=b*sinC所以c*sinB=b*sinC所以b/sinB=
∵b+c>a,即20-a>a∴a<10又∵a,b,c均为整数且a>b>c,a+b+c=20.∴有四种情况,即①a=9,b=8,c=3②a=9,b=7,c=4,③a=9,b=6,c=5④a=8,b=7,