如图,将三角形ABC绕点P顺时针旋转90度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:03:19
如图,△ABC是Rt△,BC是斜边,P是三角形内一点,将△ABP绕点A逆时针旋转后,能与△ACP

参考答案\x09相逢又告别,归帆又离岸,既是往日欢乐的终结,又是未来幸福的开端.

如图,已知在三角形ABC中,AB=AC,若将三角形ABC绕点C顺时针旋转180°得到三角形FEC

(2)由于三角形ABC绕点C顺时针旋转180°得到三角形FEC=》AC=AEBC=FC=>四边形ABEF是平行四边形四边形ABEFD的面积=4*三角形ABC=12平方厘米(3)要使四边形ABFE为矩形

已知如图在rt三角形ABC,角ACB=90度,将三角形ABC绕点C按顺时针方向旋转得三角形A1B1C,CB1,A1B1,

跟据旋转的性质,对应边所成的角都等于旋转角∴∠CB1A1=∠CBA∵∠B1DE=∠BDC∴∠BCB1=∠DEB1∵∠DEB1=∠AB1D∴∠BCB1=∠AB1D∴AB1∥BC

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

已知如图,在三角形ABC中,∠ACB=90°,将三角形ABC绕点C按顺时针方向旋转得三角形A'B

这图只有几粒米大.也无法放大.重新上传大一点图,亲

如图,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(-x0,y0),将三角形ABC作同样的平移得到

P(x0,y0)经平移后对应点为P1(-x0,y0),两个点的纵坐标不变,横坐标变化,说明是左右平移,若x0>0,则-x0<0,所以向左平移x0-(-x0)=2x0个单位,三角形ABC上的每一点作同样

如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将三角形PAC绕点A逆时针旋转后,得到三角形P'A

假定等边△ABC的边长为k,作BC边上的高AD,则BD=k/2,由勾股定理得:AD²=AB²-BD²=k²-k²/4=3k²/4AD=(√3

如图,p是三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P’AB,则PP

p是三角形ABC内的一点(等边三角形吧?应该是!)由△PAC绕点A逆时针旋转后,得到△P’AB,所以△APP'是等边三角形,PP'=AP=6,BP'=PC=10,所以△BPP'是直角三角形,角APB=

等边三角形三角形ABC是等边三角形,P为三角形ABC内部一点,将三角形ABP绕点A逆时针旋转后,能与三角形ACQ重合,如

因为三角形ABP绕点A逆时针旋转后,能与三角形ACQ重合,所以三角形ABP与三角形ACQ全等所以AP=AQ=3因为三角形ABC是等边三角形所以∠BAC=∠ABC=60`又因为∠PAC+∠BAP=∠AB

如下图所示,三角形ABC是等腰直角三角形,BC是斜边,点P是三角形ABC内一点,将三角形ABP绕点A逆时针旋转%

将△ABP绕点A逆时针旋转后,与△ACP'重合后,AB与AC重合.此时,AP’=AP=5.∵∠PAB=∠P'AC,∴∠P'AP为直角.∴△P'AP为直角等腰三角形,∴PP’=5√2.

如图,三角形ABC为等边三角形,点O是三角形ABC角平分线的交点.将三角形绕点O按逆时针方向旋转,分别画出旋转30

S△ABC=6×8×1/2=24因为O是三角形角平分线的交点所以OD=OE=OF(用角平分线上的点到交的两边距离相等得出,此结论无需写证明过程,可直接用)设OD为x则S△ABC=(AB×OF×1/2)

如图,P是三角形ABC内一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P'AB,则点P与

∵△ABC是等边三角形∴∠BAC=60°∵旋转△PAC≌△P'AB∴∠PAC=∠P'AB,P'A=PA=6∴∠PAP'=60°∴△APP'是等边三角形∴PP'=PA=6∵P'B=BC=10,PB=8,

如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为边AB,AC的中点,将△ABC绕点B顺时

连接BH,BH1,∵O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=4+3=7,所以利用扇形面积公式可得120

如图,p是正三角形ABC内的一点,若将三角形PAB绕点A逆时针旋转到三角形P'AC,则角PAP'等

∵△P‘AC是△PAC绕点A旋转得到的∴△PAB≌△P’AC∴∠P‘AC=∠PAC∵△ABC是等边三角形∴∠BAC=60°∴∠PAP’=∠P‘AC+∠PAC=∠PAC+∠PAB=∠BAC=60°记得及