如图,已知:AB是圆O的弦,过点B作BC垂直于AB交圆O于点C,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:52:27
图呢?再问:看到了吗再答:因为CD为直径,所以∠F=90°。又因为点C是弧AB的中点,所以AB⊥CD,所以△CDF,△CE?为直角三角形。所以∠CEB=∠FDC=90°-∠DCF。(2)同上
(1)证明:∵OP//BC∴∠AOP=∠ABC∵AB是圆O的直径∴∠ACB=90∵AP是圆O的切线∴∠PAB=90∴∠ACB=∠PAB∴△ABC≈△POA(2)AB=2OB=4,AO=BO=2∵△AB
∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚
如图,过点D作DG⊥OC,交OC于点H∵AB⊥OC DG⊥OC∴DG‖AB∴弧AD=弧BG;∠DOA=∠ODH∵OD=DE DH⊥OC∴DH是等腰三角形ODE的角平分线
连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC
连接CE、CF、EO、FO.因为EF平行于AB,OC垂直于AB,所以D是EF的中点.又因为D是OC的中点,所以四边形CEOF是平行四边形.又因为CO垂直于EF,所以平行四边形CEOF是菱形.所以CE=
连接OC和BC可得角ACO=角CAO=30度角ABC=60度又因为CD是切线所以OC垂直CD得角D=30度AC=根号3
(1)角CEA=角D.(2)结论仍成立.证明:CD为直径,则∠DFC=90°,得∠D+∠DCF=90°;点C为弧AB的中点,则CD垂直AB,得:∠CEA+∠DCF=90°.所以,∠CEA=∠D.
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
连接OE,OM=OC/2=OE/2,OC垂直于AB,角OEM=30度.EF//AB,角AOE=角OEM=30度.[内错角]角EOC=90度-角OEM=90度-30度=60度.角CBE=角EOC/2=3
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
取CD的中点M,连接OM,OM是CD的弦心距,OM垂直于CD,AE垂直于CD,根据三角形相似,OM/AE=OP/AP=OP/(10+OP),整理得OP=10OM/(AE-OM)OM垂直于CD,BF垂直
1)设PO交BC于DPO是BC的平分线,PO垂直于BC因为AB是圆O的直径,所以,
1.连接OD,OA=OD,则∠DAO=∠ADO,AD为角平分线,有∠CAD=∠DAO,则∠CAD=∠ADO,所以AC//OD,又DE⊥AC,则∠CAD+∠ADE=90,∠ADE+∠ADO=90,所以O
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC
1、∵OA=OC=4 AE=2∴OE=OA-AE=2 AB=2OA=8∵CD⊥AB , AB是圆O的
(1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=2/3AB=2OB=2*
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A