如图,已知PA,PB分别切圆O于A,B两点,C是圆O上任一点,过C作圆O的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 22:33:39
图呢据描述可知:三角形DPA和APE相似,可得PD/PA=PA/PE即2/4=4/PE解得PE=8DE=PE-PD=6(直径)则半径OA=3方法二:PA维圆O切线,可知,OA垂直于PA又知OA=OD根
证法1:AB·PB-AC·PC=AB·PC-AC·PB(AB+AC)PB=(AB+AC)PCPB=PC;∵PA,PB为切线∴PA=PB=PC;∵AP⊥PC∴∠PAC=∠PCA=45°∠PAB=∠PBA
http://i159.photobucket.com/albums/t145/l421013/MATH2/PAB.png
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
∠APB=40,那么∠ACE+∠CDP=180-40=140,由于A、B、E均为切点,那么OC平分∠ACE,OD平分∠PDC,所以∠ODE+∠OCE=1/2×(∠ACE+∠CDP)=70,∠COD=1
根据圆外一点至圆作二切线段相等的性质,QA=QE,DE=DB,∴△PQD周长=PQ+QD+PD=PQ+QA+DB+PD=PA+PB=2PA=10cm.
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
解题要点:连接OA因为PA、PB是⊙O的切线所以OA⊥PA,AB⊥OP所以可证△OAM∽△OPA所以OA/OP=OM/OA由OA=OC得OC/OP=OM/OC而∠COP=∠MOC所以△POC∽△COM
证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO
△PDE的周长为24因为PA、PB与圆相切所以PB=PA=12所以PA+PB=24又因为DA、DC与圆相切所以DA=DC同理可得EC=EB所以解得周长为24
连结CE,BD,∵PA、PB分别切圆O于A、B,∴弧AC=弧BC∴∠CDB=∠ADC=30°,又∵∠EFD=∠BFD=Rt∠,DF=DF∴△BFD≌△EFD∴EF=BF=1/2BE=2,BD=ED在R
∵PA、PB切⊙O于A、B两点,∴PA=PB,∵PA、PB的长分别是方程x2-2mx+3=0的两根,∴△=(-2m)2-4×3=0,∴m2=3,m>0,∴m=3,∴x2-23x+3=0,∴x1=x2=
经过半个小时的研究,你懂的第一个问,因为PA是切线,所以PA垂直于AC,又因为ED垂直于AC,所以PA平行于DE,所以DE除以PA等于CE除以CP,又因为EF平行于PB,所以EF除以PB也等于CE除以
(1)、因为PA、PB切圆O于A、B点,所以PA=PB,又有CD切圆O于E,连接OA、OE,OA=OE,OC=OC,所以三角形OAC全等于三角形OCE,所以AC=CE;同理:BD=ED;所以三角形PC
证明:连接PO∵PA、PB是圆O的两条切线∴OA⊥PA,OB⊥PB又∵OA=OB=半径,OP=OP∴Rt⊿PAO≌Rt⊿PBO(HL)∴PA=PB
设DC切圆O于点E,则DA=DE,CB=CEPA=PD+DA=PA+DE,PB=PC+CB=PC+CE△PCD周长为:PC+PD+CE=PD+DE+PC+CE=PA+PB=14再问:为什么da=de,
应该是PAPB分别切圆O,BC为圆o的直径求证AC平行OP证明:连接AB,OC∵∠PAO=∠PBO=90º∴PAOB四点共圆∴∠POB=∠PAB∵∠PAB=∠ACB【弦切角等于弦所对的圆周角
不管o是不是角平分线po上的一点,都是108度啦
PA,PB分别切圆O,PAO是直角三角形已知圆O的半径为3cm,PO=6cm,PA,PB分别切圆O于A,B,则PA²=PO²-AO²=36-9=27PA=3√3