如图,已知三角形ABC内结与圆O,且AB=AC,直径AD交BC于点E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:52:46
如图,已知:三角形ABC中,BC

∵ED垂直且平分AB,∴BE=AE.∵BE+CE+BC=15cm∴AE+CE+BC=15cm即AC+BC=15cm∵AC=9cm∴BC=6cm

如图4所示,已知D是三角形ABC内的一点,连结DB、DC,试探究BA+AC与DB+DC的大小关系.

证明:过D作直线交AB、AC于E、F,;根据三角形任意两边的和大于第三边有;BD

如图,已知,D是三角形ABC内一点,连结DB、DC,试探究AB=AC与DB=DC的大小关系

应试探究AB+AC与DB+DC的大小关系证明:连结BD,延长BD交AC于点E.∵在△ABE中,AB+AE>BE∴AB+AE+EC>BE+EC即AB+AC>BE+EC∵在△CED中,DE+EC>DC∴D

已知,如图,点P是三角形ABC内一点,连接PB,PC,请比较角BPC与角A的大小?并说明理由

角A+∠ABC+∠ACB=180∠P+∠PBC+∠PCB=180又∠ABC>∠PBC∠ACB>∠PCB所以∠A<∠P

已知:如图D是三角形ABC内的一点,连接DB、DC.试探究BA+AC与DB+DC的大小关系

AB+AC>BD+CD证明:延长CD交AB于E∵在△ACE中AC+AE>CE∴AC+AE>CD+DE∵在△BDE中BE+DE>BD∴AC+AE+BE+DE>CD+DE+BD∴AB+AC>BD+CD

如图,已知△abc是正三角形,p为三角形内一点,且PA=3

可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

如图,已知P是三角形ABC内任一点,求证:AB+AC大于BP+PC

延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,已知P是三角形ABC内任意一点,求证:角BPC>角A

证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.

如图 已知O是 三角形ABC 内任意一点 求证 OB+OC

有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

如图,已知三角形ABC,用尺规作一个三角形,使作出的三角形与三角形ABC相似并且相似,

已知ΔABC,求作:ΔADE,使ΔADE∽ΔABC,且AD:AB=2:1. 作法:1、延长AB,在射线AB上截取BD=AB,2、延长AC,在射线AC上截取CE=AC,3、连接DE,则ΔADE

已知如图o为三角形ABC内任意一点求证

△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD

已知,在三角形ABC中,角C=90°,AC=4,BC=3.如图2,圆O1与圆O2是三角形ABC内互相外切的两个等圆,求这

(12-r)/20=2r/3r=36/37再问:为什么再答:O1O2C与BCA相似,O1O2/BC=O1C/ACO1O2=2rO1C=(4*3)/5-r=(12-5r)/5(12-5r)/20=2r/

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直于bc与f,连接de、

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直bc 连接de df

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行