如图,已知圆o的两条弦ba,dc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:40:33
延长线段BA至点C,使BC=3BA,取BC的中点D,已知AD=2cm(如图),求BC的长.

∵BC=3BA,BC的中点D∴BD=0.5BC=1.5AB∵AD=2cm=BD-BA=1.5AB-AB=0.5AB∴AB=4㎝∴BC=3×4=12㎝

如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O

当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s

如图,D为圆O上一点,C在直径BA的延长线上,且角    CDA等于 角 CBD.

因为∠CDA=∠CBD,∠C=∠C所以△CDA∽△CBD,CD:CB=AD:DBAB为直径,∠ADB为直径所对圆周角,所以∠ADB=90因为tan∠CBD=tan∠CDA=2/3,所以AD:DB=2/

如图,D为圆O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.CD是圆O的切线,DO为半径,过点B作圆O的切线交C

如果你是初中,你可以这样做说说思路你自己做很明显三角形ABD,CDO,ABE都是直角三角形AD:BD=2/3可证明三角形ADC与三角形CBD相似AD:BD=CD:BC得CD=4设圆的半径为R,则OC=

如图,△ABC为圆O的内接三角形,D是BA延长线上一点,已知∠ACD=∠CBD=45° 若∠BCD=75°,圆O的半径为

连接OB∵∠BCD=75°,∠ACD=45°∴∠ACB=30°∴∠AOB=60°∴AB=OA=2作AE⊥BC于点E∵AB=2,∠ABC=45°∴AE=√2∵∠ABC=30°∴CE=√6∴BC=√2+√

如图,AB是圆O的直径,CB是圆O的弦,D是弧AC的中点,过D点作直线与BC垂直,交BC延长线于E点,且BA交延长线于F

1)因为D是圆弧AC的中点,所以AC垂直于DO;因为AB是直径,且C是圆上一点,所以三角形ACB是直角三角形,角ACB=90°,所以AC垂直于BC;所以DO//BC;因为DE垂直于BC,所以DE垂直于

已知如图AB是圆O的直径,点P为BA延长线上的一点.

第一问:1)因为DC是圆O的切线,所以∠DCB=∠CAB2)因为AB是直径,所以∠BDC=∠BCA=90°3)由1)、2)可知△BCD相似于△BAC,于是BC/BA=BD/BC,即BC^2=BD*BA

如图,已知Rt△ABC中,∠B=90°,点E是BA延长线上的一点.以边AC上的点O为圆心、OA为半径的圆O与EC相切,D

第二题考虑一下圆,OD=OA,然后就行了,自己算吧,我也正在算第三题我不会写.~~~~(>_

已知,如图四边形ABCD内接于圆O,CD是远O的直径CB=BA,MN切圆O于A,∠DAM=28° 求∠B,∠BAN

∠B=118°,∠BAN=31°连接AC、BO因为弦切角=同弧所对圆心角的一半=同弧所对圆周角,所以由题得:对于弧AD:∠DAM=28°=½∠AOD=∠ACD,则∠ACD=28°,∠AOD=

如图 AB是圆O的直径 D在AB上 且AD:BD=1:4 CD⊥AB于D 交圆O于点C 切线CP交BA延长线于P

储备知识:韦达定理:对于关于x的方程ax²+bx+c=0,x1,x2是其两根则有x1+x2=-b/a,x1•x1=c/a连接OC∵AD、BD是关于x的方程x^2-(4m+2)x+

如图,已知圆O的两条弦

解题思路:先求出∠AEB的度数,再求正弦值解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/incl

已知如图 圆o的两条弦BA,CD的延长线相交于点P,连接OP交圆O于点E 满足弧DE=弧AE.求证AB=CD

如果图片看不清,这是文字:辅助线:延长PE交圆O于F,连AD,BE,CE证明:∵DE=AE∴弧DE=弧AE又EF为直径∴EF平分弧AD(垂直平分弦逆定理)∴直线FP(EF)垂直平分弦AD∴DP=AP(

如图,BC是圆O的直径,AD垂直BC于D,弧BA等于弧AF,BF与AD交于E,

证明:(1)∵BC是圆O的直径,∴∠BAC=90°,∴∠BAD+∠CAD=90°,又AD⊥BC,∴∠ACB+∠CAD=90°,∴∠BAD=∠ACB;(2)∵弧BA等于弧AF,∴∠ACB=∠ABF,∵∠

如图,AB是圆O的直径,点C在BA的延长线上,CA=AO,点D在圆O上,∠ABD=30°. 1)求证:CD是圆O的切线.

∠ABD=30°---∠OBD=30°---∠ODB=30°,∠ADB=90°∠BAD=60°-----∠ACD=∠ADC=30°------∠ODC=∠ADC+∠ADO=90°又OD是圆O半径,所以

如图,AB为圆o的直径,AB=10,dc切圆o与点c,AD垂直于垂足为d ,AD交圆o于点d (1)求证 AC平分∠BA

(1)延长BC交AD延长线于P∵AB是直径,AC⊥BC,AC⊥CP,∠ACP=90°又,DC与圆O相切,则,OC⊥CD,∠OCD=90°∴∠ACD+∠DCP=∠ACD+∠OCA=90°,即∠OCA=∠

如图,BC是圆O的直径,AD垂直BC于D,弧BA=弧AF,BF交AD于点E.求证AE=BE

第一个问题:∵BC是直径,∴AB⊥AC,又AD⊥BC,∴∠BAE=∠ACB.[同是∠ABC的余角]∵弧AB=弧AF,∴AB=AF,∴∠ABE=∠AFE.∵A、B、C、F共

已知:如图,在△ABC中,AB=AC.以AB为直径的⊙o交BC于点D,过点D做DE⊥AC于点E.延长DE交BA的延长线于

如图,连结OD,AD,∵AB=AC,∠ADB=90°,∴BD=CD,又∵BO=OA,∴OD∥AC,又∵DF⊥AC,∴DF⊥OD,∴FD是圆O的切线,∴FD²=FA*FB,∵sinB=√5/5

如图,已知△AOB中,∠AOB=90°,OD⊥AB于点D.以点O为圆心,OD为半径的圆交OA于点E,在BA上截取BC=O

证明:连接CO,∵BC=OB,∴∠1=∠2,∵∠AOB=90°,∴∠2+∠4=90°,∵OD⊥AB,∴∠1+∠3=90°,∴∠3=∠4,在△CEO和△CDO中EO=DO∠3=∠4CO=CO,∴△CEO