如图,已知圆O的直径AB与弦CD互相垂直
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:51:37
设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3
可以,但似乎太麻烦了.如下证明可否:连结AC、DC,∵AB是直径,∴∠ACB=90°,∴∠ACP=90°,∵D是AP中点,∴DA=DC,∴∠DAC=∠DCA,∵OA=OC,∴∠OAC=∠OCA,∴∠D
∵AB⊥CD,CF⊥AD故∠BAD=∠FCD又AD‖CG,于是∠FCG=90°,即∠OCG=90°,于是CG为圆O切线故∠DCG=∠CAD=2∠BAD=2∠FCD又∠DCG+∠FCD=90°,于是∠F
简单的说一下:如图,∠A=∠P=∠ACO=∠PCB=x,AC=PC所以:△AOC≌△PBC,得到OC=BC所以:△COB是等边三角形因此∠OCB=60°,所以:∠A=∠P=∠PCB=30°,∠PCO=
连结OC,∵OA,OB,OC都是圆的半径,∴△OAC和△OCB为等腰三角形;等腰△两底角相等,故有∠OAC=∠OCA,∠OBC=∠OCB;又∵三角形内角和为180°,∴∠ACB=∠OCA+∠OCB=9
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
①求证:EF//面ABC证明:∵E是PC的中点,F数PB的中点∴EF是△PBC的中位线∴EF//BC∵BC∈面ABC∴EF//面ABC②求证:EF⊥面PAC∵AB是⊙O的直径∴∠ACB=90°即AC⊥
连接OC和BC可得角ACO=角CAO=30度角ABC=60度又因为CD是切线所以OC垂直CD得角D=30度AC=根号3
连接OC,∵直线l与⊙O相切于点C,∴OC⊥CD;又∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO;又∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.
(1)连接OC∵OC=OA∴∠CAO=∠OCA又∵CD与圆O相切∴∠OCD=90°即∠OCA+∠DCA=90°∴∠CAO+∠DCA=90°又∵AC平分∠DAB∴∠DAC=∠CAO∴∠DAC+∠DCA=
1,连接AC,AD,AB,CO因为AB是直径,CO是半径,所以AO=BO=CO,故CO将角AOB平分,易得角AOC=角COB=90度,角CAO=45度,因为AC平分角DAB,所以角DAC=角CAO=4
给你一个思路吧.连接AC,可以证明ABC是一个等边三角形.所以角OCE为30度,OC=2OE=OB,则E为OB的中点.CF垂直于AD,CG又平行于AD,所以CF垂直于CG,故CG为圆的切线.AB=8,
因为:圆O的直径为8所以:OC=4因为:OA等于OB,AB与圆O相切与点C所以:三角形OAB是一个等边三角形,且C为AB中点,OC垂直于AB所以:AC=BC=5所以:OA=根号(OC的平方+AC的平方
由勾股定理得BP=10连接AC,可证三角形ABC与PBA相似,可得BC=18/5,CP=32/5,AC=24/5过C作AP垂线,垂足为E三角形PCE与PBA相似,可得CE=96/25sinADC=CE
作OQ⊥AB,连DO并延长MC于P,连接OA则AQ=BQ=AB/2因为MC⊥AB,ND⊥AB所以MC//ND//OQ所以∠M=∠N又因为∠POM=∠DON,OM=ON所以△MOP≌△NOD所以MP=N
(1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=2/3AB=2OB=2*
连接BD∵AB⊥CD即∠AED=90°CD∥BF∴∠ABF=∠AED=90°∵AB是直径,(连接BD)∴BF的圆切线,∠ADB=∠BDC=90°∴∠FBD=∠C=30°∴在Rt△BDF中DF=1/2B
容易推得△AEO相似△ACB又因为BC=5AC=12得AB=13设半径为xAO=AC-CO=12-x由相似得OE/BC=AO/ABx/5=(12-x)/1313x=60-5x18x=60x=10/3即