如图,已知点p是三角形abc内一点,连接bp,cp.求证角bpc大于角a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 12:17:21
连接AP、BP、CP,设等边三角形的高为h,如图:∵正三角形ABC边长为2∴h=22−12=3∵S△BPC=12BC•PDS△APC=12AC•PES△APB=12AB•PF∴S△ABC=12BC•P
证明:以AC为边,在△ABC外作∠CAQ=∠BAP,且AQ=AP,连接CQ∵AB=AC,∠BAP=∠CAQ,AP=AQ∴△ABP≌△ACQ(SAS)∴∠APB=∠AQC,PB=QC连接PQ∵AP=AQ
角A+∠ABC+∠ACB=180∠P+∠PBC+∠PCB=180又∠ABC>∠PBC∠ACB>∠PCB所以∠A<∠P
中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC
分析:(1)由三角形ABC中任意一点P(x0,y0),经平移后对应点为P′(x0+5,y0-2),可得三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,即可得出对应点的坐标.(2)利用对应
以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
延长BP交AC于D.因角BPC>角BDC>角A
证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.
将△ABP绕点A逆时针旋转后,与△ACP'重合后,AB与AC重合.此时,AP’=AP=5.∵∠PAB=∠P'AC,∴∠P'AP为直角.∴△P'AP为直角等腰三角形,∴PP’=5√2.
连接BP并延长交AC于G由重心性质得,BP:PG=2:1因为DE//AC所以BD:DA=BP:PG=2:1所以BD:BA=2:3,AD:AB=1:3因为DE//AC,DF//BC所以△BDE∽△BAC
作三边的垂直平分线交于点P,即所求再问:垂直平分线?什么意思
连结PA,PB,PC.若sin角BPC=24\25,求tan角PAB的值?
∵△P‘AC是△PAC绕点A旋转得到的∴△PAB≌△P’AC∴∠P‘AC=∠PAC∵△ABC是等边三角形∴∠BAC=60°∴∠PAP’=∠P‘AC+∠PAC=∠PAC+∠PAB=∠BAC=60°记得及
作辅助线AP,因为D,E,F,G分别是PB,PC,AC,AB上的中点在三角形PBC中,DE//BC,同理在三角形ABC中,FG//BC所以DE//FG;在三角形APC中,AP//EF;在三角形APB中
如果不差条件的话DEFG是平行四边形但不一定是矩形.①是平行四边形:由三角形中位线定义可知DE为△BPC中BC的中位线,FG为△ABC中BC的中位线,由三角形中位线性质有DE∥BC且长度为BC的一半,