如图,已知直线l:y=√3 3x,过点A(0,1)作y轴的垂线交直线l于点B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:07:28
(1)动点M到点F的距离等于它到直线 y=-1的距离. 抛物线方程为:x²=4y(2)圆的半径 r=1 &
易知直线l与x轴夹角为30°∴By=Ay=1,Bx=Ay•√(3)=√(3) A1y=Bx•√(3)+Ay=3+1=4, B1x=A1y•√(3
(用含m的代数式表示)要有详细解答过程问题补充:图可以自己画,就在第一令y=0,则(-3/ab)x+3(a+b)/ab=0,解得x=(a+b)故C点坐标为
此题有两种情况:在△ABO中∠BOA=90°,OA=6,OB=8,由勾股定理得:AB=10,∵∠BAO=∠BAO,BQ=2t,AQ=10-2t,AP=t,第一种情况:AQAB
(2^21,0)y=√3x,说明斜率为√3=tan(60°)或者OM=2,所以MN=2√3,所以ON=4,OM=ON/2,所以∠nom得60°
∵点A的坐标是(0,1),∴OA=1,∵点B在直线y=33x上,∴OB=2,∴OA1=4,∴OA2=16,得出OA3=64,∴OA4=256,∴A4的坐标是(0,256).故选C.
∵直线l的解析式为:y=33x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=3,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1(0,4),同理可得A2(0
把x=1代入y=3x得y=3,∴B1的坐标为(1,3),∵△A1B1C1为等边三角形,∴A1C1=A1B1=3,∠B1A1C1=60°,∴A1A2=3cos30°=32,∴A2的坐标为(52,0),把
∵l:y=33x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=3,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1O(0,4),同理可得A2(0,16),…
∵点A的坐标是(0,1),∴OA=1,∵点B在直线y=33x上,∴OB=2,∴OA1=4,∴OA2=16,得出OA3=64,∴OA4=256,∴A4的坐标是(0,256).故选C.
∵直线l的解析式为;y=33x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴AB=3,∵A1B⊥l,∴∠ABA1=60°,∴A1O=4,∴A1(0,4),同理
因为:过PQ的圆恰过坐标原点所以:设该圆D的方程为x^2+y^2+Ax+By=0D(-A/2,-B/2)因为:PQ为圆D的直径所以:D在直线l上即-A/2-B-3=0……(1)又:圆C与圆D的交线方程
1.c的坐标(1.5,3√3/2)所以k=√32.p的坐标(4.5,3/2)解得k=√3/9所以不再再问:啊可以详细点啊再答:电脑写起来太吃力了,,就是根据斜率求角度,然后根据长度求坐标,代入验证就行
当a1=2时,B1的纵坐标为12,B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=-32,A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=-23,B2的纵坐标和A3的纵坐标相同,则A3的横
再问:万分感谢再问:我还有几题呢再答:选为满意答案吧再问:怎么选再答:就是点这个再问:太给力了,你的回答完美解决了我的问题!再问:是这样吗一我还有几题要问你等下再问:如图p1是反比例函数y=k/x(K
∠AOB=90°,于是∠ACB=90°,所以AOBC四点共圆,又:直线∠OAB=∠CAB,可得出AB⊥OC,因此直线OC的斜率k乘以直线AB的斜率-√3/3的值为-1,k=-1/(-√3/3)=√3直
(3)∵P(x,y),圆P经过点B且与x轴相切于点F∴F(x,0),半径|BP|=r=y∴BP²=y²得x²+(y-3)²=y²,化解得y=x&sup
1,连结CB,则C是△OAB边OA的中点,CB把△OAB分成面积相等的两部分,直线CB的解析式为y=-2x+2.2,过C做y轴的平行线交AB于D,则因CD∥OB,△ACD∽△AOB,s△ADC/△AB
没图,大概说明一下:1:Q在AB上,过Q做Q’使QQ’垂直于Y轴,根据相似三角形理论,QQ’/OA=BQ/BA,这里,OA、BA分别为3、5,那么,BQ是多少呢?BQ=2t,所以Q点的横坐标就是6t/