如图,已知直线y=2x 6与x轴.y轴分别交于A.B两点直线l经过原点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:44:09
1:把A中x为0代入解析式,B中y=0代入解析式,用勾股定律来算AB的长2:√4^2+2^2解出算式3:如图过P1、P2分别作两轴的平行线,交与点A,则P1A=X2-X1 P2A
)对于y=12x+1,令y=0,得:x=-2,∴A(-2,0)又点B(2,m)在y=-8x(x>0)上,∴m=-4,B(2,-4)设直线L2的解析式为:y=kx+b,则有{-2k+b=02k+b=-4
(1)由y=1/2x+2得:斜率=1\2∴AP=1\2BC∴AP=PC=AC∴∠ACB=∠APC=60°∠ABC=30°又∵直线AB与圆相切于点A且AO⊥PCAP=PC=AC∴∠PAB=∠PAO=30
1.当x=k+1时,二次函数取最小值,为-k^2+2k-1.2.抛物线方程y=x^2-2(k+1)x+4k=(x-2)(x-2k),假如B为(2,0),直线通过该点,则得2k+2-k/2=0,k=-4
y=-x+4y=k/x(k≠0)x^2-4x+k=0△=04k=16,k=4,y=4/xy=-x+4,D点坐标:(2,2)2)四边形OEDF的面积=2*2=43)②(AE^2)+(BF^2)=(EF^
1)S(△AOB)=OA*OB/2=2△AOB被分成的两部分面积相等OC=1高=2=OAy=kx+b(k≠0)经过点A(0,2)k=-2b=22)△AOB被分成的两部分面积比为1:5OC=1,S△=2
(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点
(3)抛物线y=1/2x²-3/2x+1对称轴是x=3/2,设M(3/2,Y),∵B、C关于x=3/2对称,∴MC=MB,∴要使|AM-MC|最大,便是使|AM-MB|最大,由三角形两边之差
(1)y=1/2x+1与y轴交于点A,可以得到A点坐标为(0,1),又知B点坐标为(1,0),代入y=1/2x²+bx+c,解得b=-3/2,c=1,该抛物线的解析式为y=1/2x²
y=-(3^½)x+4*(3^½)与x轴相交于A,即x=4,y=0,则A点坐标为:(4,0)又与y=(3^½)x相交于P,则联列解得:x=2,y=2*(3^&
设L与线段AB的交点为(x,y),由y=x+3易得A(-3,0),B(0,3)根据题意有3×(-x):3×y=2:1或1:2;(交点横坐标x是负值,故用-x来作为其长度)可得x:y=-2或-1/2那么
因为l1与l2交于点A,所以把A点带入l2得,b=1,然后再把A点带入l1,就可以把k算出来,k=1,所以直线l1:y=x+1因为直线1与y交于b点,所以把x=0带入l1,就算出B为(0,1)所以面积
直线y=-根号3x+4与直线y=-根号3x是平行线,不可能相交,请改正!
从你的题干上看你图上的点标记有错误,A点应该是(-3,0)过程如下:∵点C在AB上∴可设C为(-3+x,x)又∵△AOB面积被分为2:1两部分∴AC/CB=2或0.5∴(3-x)/x=2或(3-x)/
由y=-√3x+2√3得:A(2,0),B(0,2√3)三角形DAB沿直线DA折叠所以AB=AC,DB=DCAB=√〔(2√3)^2+2^2〕=4AC=4,所以C点的坐标为(4,0)设D点的坐标为(0
1、因为P在抛物线y=x²上,且横坐标为-2所以P的坐标(-2,4)P(-2,4),M(2,0)代入直线方程y=kx+b-2k+b=42k+b=0解得k=-1,b=2所以直线为y=-x+22
1,连结CB,则C是△OAB边OA的中点,CB把△OAB分成面积相等的两部分,直线CB的解析式为y=-2x+2.2,过C做y轴的平行线交AB于D,则因CD∥OB,△ACD∽△AOB,s△ADC/△AB
(1)A点位y=x-2与x轴的焦点,所以A(x,0),代入0=x-2,x=2,所以A(2,0);B点为y=x-2与y轴的焦点,则B(0,y),代入y=0-2,y=-2,则B(0,-2)(2)已知y=k