如图,点e为三角形ABC的内心

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:13:00
如图,△ABC是圆O的内接三角形,I是△ABC的内心,连接AI并延长交BC于点E,交圆O于点D.有能力的试试~

②∵∠BAD=∠EBD,∠D=∠D∴△BAD∽△EBD∴AD/BD=BD/ED∴x/2=2/y∴y=4/x∵BD≤AD≤2R∴2≤x≤6即y=4/x(2≤x≤6)③∵AE=3,即x-y=3联立y=4/

如图,D,E分别是三角形ABC的边BC,AB上的点,三角形ABC,三角形BDE,三角形ACD的周长依次为m,m1,m2

证明的是小于等于4分之5吧因为,∠1=∠2=∠3则,△ABC∽△EBD∽△ADC相似比=周长的比=m:m1:m2设,AC/BC=k则,m2/m=AC/BC=DC/AC=k解得,DC=kAC又,DC=B

已知如图三角形ABC中,点E为内心延长AE交三角形的外接圆点D,求证DB=DC=DE

内心是三角形三条角平分线的交点,所以AD,BE分别是角BAC和ABC的角平分线;角BAD=DAC,则弧BD=CD,即弦BD=CD;角DBC=DAC(同弧圆周角)角DBE=DBC+CBE=DAC+CBE

急求解这道数学题如图,点e是三角形abc的内心,ae交边bc于点f,交三角形abc外接圆于点d.求证:ed是ad和df的

证明:连接BE∵E是△ABC的内心∴∠ABE=∠CBE,∠BAD=∠CAD∴弧BD=弧CD∴BD=CD∵∠BED=∠BAD+∠ABE,∠EBD=∠EBC+∠CBD又∵∠CBD=∠CAD=∠BAE∴∠D

如图,E是三角形ABCC的内心,AE的延长线交三角形三角形ABC的外接圆与D,求证 DE=DB=DC

已知,E是三角形ABC的内心,可得:∠DAB=∠DAC,∠EBA=∠EBC.因为,∠DBE=∠DBC+∠EBC=∠DAC+∠EBC=∠DAB+∠EBA=∠DEB,所以,DB=DE.因为,∠DAB=∠D

如图,点I是三角形ABC的内心,线段AI 的延长线交三角形ABC的外接圆于点D,交BC边于点E.求证ID=BD,BD平方

(1)证明:∵∠BID=∠IBA+∠BAI(外角等于不相邻二内角和)∵I是内心,即是角平分线的交点,∴BI平分∠B,AI平分∠A,∴∠BID=(∠A+∠B)/2∵∠IBD=∠IBE+∠EBD,∠EBD

如图,点I是三角形ABC的内心,AI的延长线交边BC于点D,交三角形ABC外接圆O于点E,连BE、CE.

(1)∵∠BAD=∠ECD,∠ABD=∠CED,∴△ABD∽△CED,∴CD:AD=CE:AB,∴CD=3.证明:(2)连接IB.∵点I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠CBI,∴弧

如图 在三角形ABC中,E是内心,AE的延长线与三角形ABC的外接圆相交于D,求证:DE=DB=DC

(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA

如图 点I是△ABC的内心,点O为三角形ABC的外心,若∠BOC=140度,求∠BIC的度数,急

125°∠BOC=140°且O为△ABC外心所以弧BC所对的圆周角BAC=70°所以∠ABC+∠BCA=110°又∵I为△ABC内心∴∠IBC+∠ICB=55°∴∠I=125°

如图,在三角形ABC中,E是内心,AE的延长线和三角形ABC的外接圆相交于D,求证:DE=DB=DC.

(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA

如图三角形abc中,D,E分别为ab.ac上的点

证明:作EG//ABEG//DBEG:DB=EF:DF..(1)又EG//ABEG:AB=CE:AC因BD=CEEG:DB=AB:AC..(2)由(1)(2)得AB:AC=EF:DF

如图,点I为△ABC内心,AI交△ABC的外接圆O于D,DE‖BC,DE交AC的延长线于E

因为o为三角形ABC外接圆圆心,即为中垂线的交点,所以OD垂直于BC,又BC//DE,所以OD垂直于DE,所以DE为圆O的切线

已知如图三角形ABC中,点E是内心,延长AE交三角形的外接圆于点D求证DB=DC=DE

因为E是内心,所以EA、EB分别为∠A和∠B的角平分线,即∠BAD=∠DAC=∠A/2,∠ABE=∠EBC=∠B/2所以BD=CD因为∠DAC和∠DBC对应同一段外接圆弧CD,所以∠DBC=∠DAC=

如图,三角形abc为圆o的内接三角形,i为三角形abc的内心,ai的延长线交bc于点e,交圆o于点d.①求证:db=d

此题我做过.初三上册的图大概这样.A.IB.E.C.D是证明DB=CD吧?证明:∵AD平分∠BAC∴∠BAD=∠CAD∵∠BDC=∠CAD∠BAD=∠BCD(同圆种弧所对圆周角相等)∴∠BDC=∠BC

如图,点I是三角形ABC的内心,AI的延长线BC于点D,

已知I是三角形ABC的内心,故∠IAB=∠IAC,∠IBA=∠IBC.又∠CBE=∠CAE(圆周角相等),故∠CBE=∠IAB.又因∠EBI=∠CBE+∠IBC,∠EIB=∠IAB+∠IBA,故∠EB

已知:如图,⊙O是△ABC的外接圆,点I为△ABC的内心,AI的延长线与BC相交于点D,与⊙O相交于点E,延长AE到

证明:连接CICE因为I是三角形ABC的内心所以AE平分角BACCI平分角ACB所以角BAE=角CAE角ACI=角BCI因为角BAE=角BCE=弧BE/2因为角CIE=角ACI+角CAE因为角ECI=

如图,点I是三角形ABC的内心,AI交BC于点D,交三角形外接圆于点E.求证:IE=BE

延长BI,交圆I于F∵I为三角形的内心∴∠BIE=2∠BAE=2∠EAC,∠FBC=∠FBA∴∠FBC=1/2∠AIF=1/2∠BIE又同弧所对圆周角相等∴∠EBC=∠EAC=1/2∠BIE∴∠BIE

如图,已知E是三角形ABC的内心(即角平分线交点)角BAC的平分线交BC于点F,且与三角形ABC的外接圆相交于点D

1,∠BAE=∠CAD  ∠ABE=∠EBC∠DEB=∠BAE+∠ABE=∠CAD+∠EBC  ∠CAD=∠CBD∠DEB=∠CBD+∠EBC=∠DBE故∠DB

点P为三角形ABC的内心,AP的延长线交三角形ABC的外接圆于点E,交BC于点D.求证:PE=BE.

延长BP交AC于F.由三角形外角定理,有:∠APF=∠BAP+∠ABP,又∠APF=∠EPB,∠BAP=∠CAE,∠ABP=∠CBP,∴∠EPB=∠CAE+∠CBP,而A、C、E、B共圆,∴∠CAE=

-如图,点E为△ABC的内心,AE交△ABC的外接圆于点D,求证:BD=ED=CD.

内心是角平分线的交点.1ReBAD(角BAD的角度)=ReCAD,所以弦BD=CD2连接BEReEBD=ReEBC+ReDBC=ReEBA+ReDAC(一个是因为E是内心,BE是角平分线;另一个是因为