如图,点P为平行四边形ABCD内的一点,△PAB,△PBC,△PDC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:26:00
由平行四边行ABCD得出角ADC+角BCD=180度,因为角BCD+角BCF=180度,所以角BCF=角ADC=角ABC.因为E是BC的中点,所以BE=EC.AF与BC交叉,所以AEB=CDF.条件角
延长BE交AD于F,则△BCE≌△GDE,所以AD=GD,又AP⊥BE所以PD是直角三角形APG斜边上的中线,所以PD=AD
1.△ABP∽△PQC∽△DQR2.要延长BQ交AD的延长线,在根据相似三角形的性质可求出BP:PQ:QR=3:1:2
是平行四边形证明:因为M,N分别是AB,CD的中点,所以AM平行且等于CN,所以四边形AMCN为平行四边形,所以PN平行MQ.同理,PM平行NQ,所以四边形MQNP是平行四边形.
三角形ABM相似三角形PDM,则有MP/AM=DM/BM---1式三角形BMN相似三角形DMA,则有AM/MN=DM/BM---2式2式*1式得MP/MN=DM平方/BM平方
(1),连接AC,BC是直径,角BAC=90度,BC=2,角ABC=角D=60度,AC=√3/2BC=√3,AB=1/2BC=1,S平行四边形ABCD=AB*AC=√3.(2)CD=AB=1,AD=B
证明:连接BD,交AC于点O,连接EO,∵四边形ABCD为平行四边形∴BO=OD,∵点E是PD的中点,∴E0是△DBP的中位线,∴EO∥BP,又EO⊂平面AEC,BP⊄平面AEC,∴PB∥平面AEC.
四边形MQNP是平行四边形.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵M、N分别为AD、BC的中点,∴MD∥BN,MD=BN,AM=CN,AM∥CN,∴四边形BNDM与四边形ANCM是
(1)设AC∩BD=H,连接EH,∵H为平行四边形ABCD对角线的交点,∴H为AC中点,又∵M为PC中点,∴MH为△PAC中位线,可得MH∥PA,MH⊂平面MBD,PA⊄平面MBD,所以PA∥平面MB
显然EPGD、GPFC、EPHA、PHBF均为平行四边形,∴S△DEP=S△DGP=1 2 S平行四边形DEPG,∴S△PHB=S△PBF=1 &
证明:延长BE,交AD的延长线于点G∵AG∥BC∴G=∠CBE,∠GDE=∠C∵ED=EC∴△EDG≌△ECB∴DG=BC∵AD=BC∴AD=DG∵∠APG=90°∴AG=PD(直角三角形斜边中线等于
证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△BPE∽△DFP,∴PE:PF=PB:PD,∵AD∥BC,∴△BPN∽△DPM,∴PB:PD=PN:PM,∴PE:PF=PN:PM,即
(1)∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠
∵CP∥ER,∴△BCP∽△BER;∵CP∥DR,∴△PCQ∽△RDQ;∵CQ∥AB,∴△PCQ∽△PAB;∴△PCQ∽△RDQ∽△PAB.∴图中相似三角形(相似比为1除外)有4对,故选:D.
过点P作PM⊥AB于点M,交CD于点N四边形ABCD是平行四边形AB=CDAB‖CDPM⊥ABPN⊥CDMN是AB与CD的高MN=PM+PNS△PAB=1/2*AB*PMS△PCD=1/2*CD*PN
连接P与平行四边形的中心(对角线的交点),并延长再问:多谢还有木有其他线?再答:肯定没有其他的了再问:ohthanks!
相等.连AC,与BD相交于O,则△ABO的面积=△CBO的面积,又△PAO与△PCO等底同高,所以△PAO的面积=△PCO的面积.请点击“采纳为答案”
S△BCQ/S△BCD=BQ/BD=BP/AB=(5-X)/5而S△ABD=S△BCD=10/2=5所以S△BCQ=5-XS△PBQ/S△ABD=(BP/AB)^2=((5-X)/5)^2所以S△PB
∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵M、N分别为AD、BC的中点,∴MD∥BN,MD=BN,AM=CN,AM∥CN,∴四边形BNDM与四边形ANCM是平行四边形,∴AN∥CM,B