如图,点P为平行四边形ABCD内的一点,△PAB,△PBC,△PDC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:26:00
如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F. P是AD的中点

由平行四边行ABCD得出角ADC+角BCD=180度,因为角BCD+角BCF=180度,所以角BCF=角ADC=角ABC.因为E是BC的中点,所以BE=EC.AF与BC交叉,所以AEB=CDF.条件角

如图,在平行四边形ABCD中,E为BC中点,AP⊥BE于点P,求证AD=PD

延长BE交AD于F,则△BCE≌△GDE,所以AD=GD,又AP⊥BE所以PD是直角三角形APG斜边上的中线,所以PD=AD

如图,四边形ACED和四边形ABCD都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.

1.△ABP∽△PQC∽△DQR2.要延长BQ交AD的延长线,在根据相似三角形的性质可求出BP:PQ:QR=3:1:2

证明平行四边形如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P

是平行四边形证明:因为M,N分别是AB,CD的中点,所以AM平行且等于CN,所以四边形AMCN为平行四边形,所以PN平行MQ.同理,PM平行NQ,所以四边形MQNP是平行四边形.

如图,已知平行四边形ABCD,P为DC延长线上一点,AP分别交BD,BC于点M,N,试说明:AM²=MN×MP

三角形ABM相似三角形PDM,则有MP/AM=DM/BM---1式三角形BMN相似三角形DMA,则有AM/MN=DM/BM---2式2式*1式得MP/MN=DM平方/BM平方

如图,四边形ABCD为平行四边形,以BC为直径的圆O经过点A,∠D=60°,BC=2一动点P在AD上移动,过点P作直线A

(1),连接AC,BC是直径,角BAC=90度,BC=2,角ABC=角D=60度,AC=√3/2BC=√3,AB=1/2BC=1,S平行四边形ABCD=AB*AC=√3.(2)CD=AB=1,AD=B

如图,在底面为平行四边形的四棱锥P-ABCD中,点E是PD的中点.

证明:连接BD,交AC于点O,连接EO,∵四边形ABCD为平行四边形∴BO=OD,∵点E是PD的中点,∴E0是△DBP的中位线,∴EO∥BP,又EO⊂平面AEC,BP⊄平面AEC,∴PB∥平面AEC.

如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连接AN、DN、BM、CM,且AN、BM交于点P,CM、DN交

四边形MQNP是平行四边形.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵M、N分别为AD、BC的中点,∴MD∥BN,MD=BN,AM=CN,AM∥CN,∴四边形BNDM与四边形ANCM是

如图,四棱锥P-ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)设AC∩BD=H,连接EH,∵H为平行四边形ABCD对角线的交点,∴H为AC中点,又∵M为PC中点,∴MH为△PAC中位线,可得MH∥PA,MH⊂平面MBD,PA⊄平面MBD,所以PA∥平面MB

如图,点P为平行四边形ABCD内一点,过P点分别作AB、AD的平行线,交平行四边形ABCD的各边于点E、F、G、H.

显然EPGD、GPFC、EPHA、PHBF均为平行四边形,∴S△DEP=S△DGP=1  2  S平行四边形DEPG,∴S△PHB=S△PBF=1 &

如图,在平行四边形ABCD中,E为CD中点,AP垂直BE于点P,求证:AD=PD

证明:延长BE,交AD的延长线于点G∵AG∥BC∴G=∠CBE,∠GDE=∠C∵ED=EC∴△EDG≌△ECB∴DG=BC∵AD=BC∴AD=DG∵∠APG=90°∴AG=PD(直角三角形斜边中线等于

如图,P为平行四边形ABCD的对角线BD上任意一点,过点P的直线交AD于点M,交BC于点N,交BA的延长线于点E,交DC

证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△BPE∽△DFP,∴PE:PF=PB:PD,∵AD∥BC,∴△BPN∽△DPM,∴PB:PD=PN:PM,∴PE:PF=PN:PM,即

如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.

(1)∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠

如图四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.则图中相似三角形(相

∵CP∥ER,∴△BCP∽△BER;∵CP∥DR,∴△PCQ∽△RDQ;∵CQ∥AB,∴△PCQ∽△PAB;∴△PCQ∽△RDQ∽△PAB.∴图中相似三角形(相似比为1除外)有4对,故选:D.

如图,已知P为平行四边形ABCD外一点(P点和平行四边形ABCD在同一个平面上)△PAB和△PCD的面积分别为7C㎡和3

过点P作PM⊥AB于点M,交CD于点N四边形ABCD是平行四边形AB=CDAB‖CDPM⊥ABPN⊥CDMN是AB与CD的高MN=PM+PNS△PAB=1/2*AB*PMS△PCD=1/2*CD*PN

如图,已知P是平行四边形ABCD外的一点,请做出过点P且把平行四边形ABCD的面积等分的

连接P与平行四边形的中心(对角线的交点),并延长再问:多谢还有木有其他线?再答:肯定没有其他的了再问:ohthanks!

如图,点P为平行四边形ABCD的对角线BD上任一点,猜想△BPC面积和△ABP的大小关系,并说明理由.

相等.连AC,与BD相交于O,则△ABO的面积=△CBO的面积,又△PAO与△PCO等底同高,所以△PAO的面积=△PCO的面积.请点击“采纳为答案”

如图,在平行四边形ABCD中,AB=5,AD=3,平行四边形ABCD的面积为10,点P是AB边上任意一点

S△BCQ/S△BCD=BQ/BD=BP/AB=(5-X)/5而S△ABD=S△BCD=10/2=5所以S△BCQ=5-XS△PBQ/S△ABD=(BP/AB)^2=((5-X)/5)^2所以S△PB

如图,平行四边形abcd中,m.n分别为ad.bc的中点,连结an.dn.bm.cm.且an.bmjiao交于点p,cm

∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵M、N分别为AD、BC的中点,∴MD∥BN,MD=BN,AM=CN,AM∥CN,∴四边形BNDM与四边形ANCM是平行四边形,∴AN∥CM,B