如图,直线y=-三分之一x 1与坐标轴交于A,B两点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:02:24
如图,设直线y=kx(k<0)与双曲线y=-5x相交于A(x1,y1)B(x2,y2)两点,则x1y2-3x2y1的值为

由图象可知点A(x1,y1)B(x2,y2)关于原点对称,即x1=-x2,y1=-y2,把A(x1,y1)代入双曲线y=-5x得x1y1=-5,则原式=x1y2-3x2y1,=-x1y1+3x1y1,

如图,直线y=k1x+b与反比例函数y=k2/x(x

1.由A(1,6)可得:k2=xy=6即反比例函数y=6/x又B(a,3),可得:a=6/3=2由A(1,6),B(2,3)得:6=k1+b3=2k1+b联立解得:k1=-3b=9即直线y=-3x+9

如图,直线y=kx(k>0)与双曲线y=2/x交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值等于

将A点代入直线方程:Y1=K*X1——(1)B点代入:Y2=K*X2——(2)因为:K>0,X≠0  所以(1)/(2)得:Y1*X2=X1*Y2由于直线通过原点,双曲线原点对称:就有:X2=-X1那

如图,反比例函数y=kx(k≠0)的图象经过点(-3,1),并与直线y=−23x+m交于A(x1,y1)、B(x2,y2

(1)把(-3,1)代入到y=kx,得:k=-3×1=-3,∴反比例函数的解析式为y=−3x;(2)∵反比例函数y=−3x与直线y=−23x+m交于A(x1,y1)、B(x2,y2)两点,∴−3x=−

如图,直线y=kx(k>0)与双曲线y=4x交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1的值等于

由题意知,直线y=kx(k>0)过原点和一、三象限,且与双曲线y=4x交于两点,则这两点关于原点对称,∴x1=-x2,y1=-y2,又∵点A点B在双曲线y=4x上,∴x1×y1=4,x2×y2=4,∵

直线与圆相交问题:书上讲:设直线的斜率为k,直线与圆连理联立,消去y后所得方程两根为x1,x2,则弦长d=|x1-x2|

两点间的距离公式:d=√[(x1-x2)^2+(y1-y2)^2]将直线y=kx+b代入得:d=√[(x1-x2)^2+k^2(x1-x2)^2]=√[(1+k^2)(x1-x2)^2]=√(1+k^

如图,直线y=-4分之3x+5与x轴,y轴交与A,B两点

什么啊?说清楚========再问:什么什么啊,这很清楚啊!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

已知直线y=(1-k^2)x-(k-2)经过点(0,-1)、(x1,y1)和(x1+1,y2),试指出y1与y2的大小关

y=(1-k^2)x-(k-2)经过点(0,-1)所以-1=(1-k^2)*0-(k-2),k=3所以直线方程是:y=-8x-1,随着x的增大而减小故y1>y2

如图,直线y=-x+6与双曲线y=-1/x(x

设A(X1,Y1),-1/X1=-X1+6,即x1^2-6x1-1=0,B(6,0)OA^2-OB^2=X1^2+Y1^2-36=X1^2+(-X1+6)^2-36=2X1^2-12X1=2(x1-6

如图,设直线y=kx(k<0)与双曲线y=-2/x相交于A(X1,Y1)B(X2,Y2)两点,则2X

如图,设直线y=kx(k<0)与双曲线y=-2/x相交于A(X1,Y1)B(X2,Y2)两点,则2X1Y2-3X2Y1的值为多少?直线y=kx(k<0)与双曲线y=-2/x相交于A(X1,Y1)B(X

spss具体操作求教现想用SPSS做直线相关分析图,如:Y与X1的直线相关;Y与X2的直线相关;Y与X3的直线相关,在S

整合到一块?就是进行回归分析,将x123作为自变量,y作为因变量,求出三个自变量的回归系数,就可以拟合到一个多元回归方程里了如果说画图,是拟不到一块的,最多画出来的也是y和三个自变量的矩阵相关图,用来

如图7,直线y=kx(k>0)与双曲线y=4/x交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1=

设(x1,y1)是第一象限交点那么(x2,y2)则是第三象限的交点,则有x2,y2

如图直线y=kx【k

联立x^2=-4/k所以x1x2=4/kx1+x2=02x1y2-7x2y1=2x1*kx2-7x2*kx1=(-5k)*x1x2=(-5k)*(4/k)=-20k(x1^2+x2^2)=k[(x1+

设抛物线y=ax2(a>0)与直线y=kx+b有两个公共点,其横坐标是x1,x2,而x3是直线与x轴交点的横坐标,则x1

由题意x3=−bk,联立抛物线y=ax2(a>0)与直线y=kx+b得ax2-kx-b=0,∴x1 +x2=ka,x1x2=−ba,∴1x1+1x2=−kb,∴x1x2=x1x3+x2x3,

(2013•南通)如图,直线y=kx+b(b>0)与抛物线 y=1/8x²相交于点A(x1,y1)

南京位于北纬31°14“至32°37”,东经118°22“119°14”飞往南通位于北纬31°41'-32°43',东经120°12'-121°55'从南京是可见的,在南通市以西约198公里.如皋市直

斜率为k的直线与曲线y=lnx交于A(X1,Y1),B(X2,Y2)(X1<X2)求证x1

简单运用拉格朗日中值定理可证.首先我们要知道拉格朗日中值定理,它是这样的:设f(X)在[a,b]连续,在(a,b)上可导,则存在x属于(a,b),使得[f(b)-f(a)]/[b-a]=f'(x).证

如下图直线l与抛物线Y^2=x交于A(x1,y1)B(x2,y2)两点,与X轴交于点M,且y1y2=-1,求证点M的坐标

M(m,0)直线ly=k(x-m)x=y/k+mY^2=x代入y^2-y/k-m=0y1y2=-m=-1m=1M的坐标为(1,0)

如图,直线y=-x+b与双曲线y=-3/x(x

得6.再问:要再答:设A(x,y)B(b,0)y=-x+by=-3/xx^2-bx-3=0Δ=根号(b^2+12)x=(b-根号Δ)/2y=(b+根号Δ)/2x^2+y^2=b^2+6OA^2-OB^

已知(x1,y1)和(x2,y2)是直线y=-3x+3上的两点,且x1>x2,则y1与y2的大小关系是( )

y1=-3x1+3,y2=-3x2+3y1-y2=-3x1+3x2=-3(x1-x2)x1>x2x1-x2>0y1-y2<0y1<y2