如图,角acb和角ecd,ca=cb求证ae方 ad方=2ac方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:39:39
1、EC=CD;AC=CB'∠ECA=∠DCB所以三角形ECA全等于三角形DCB.所以∠EAC=∠DBC=45°又因∠CAB=45°,所以∠EAB=∠EAC+∠CAB=90°,即AE与AB垂直2、因两
由△ACE≌△BCD知AE=BD=12,角aec=角abc=45°,角ead=45°+45°=90°;在三角形aed中,勾股定理即可,自己做吧
∵Δacb和Δecd都是等腰直角三角形∴∠dac=∠dec=45°∠ecd=90°∴daec四点共圆又∵∠ecd=90°∴ed为圆的直径∴∠ead=90°即Δead为直角三角形∴ad²+ae
∵Rt△ABC和Rt△ECD中,∠ACB=∠ECD=90°,CA=CB,CE=CD,EC+AC=32,∴DE+AB=2×32=6,∵∠ACB=∠ECD=90°,∠ACD=∠ACD,∴∠ACE=∠BCD
证明:1、在△ACE和△BCD中,AC=CB,EC=CD,∠ACE=∠DCB=90°-∠ACD所以△ACE≌△BCD.2(1)、因△ACE≌△BCD,所以AE=DB=8,∠EAC=∠ABC=45°,所
∵Rt△ABC和Rt△ECD中,∠ACB=∠ECD=90°,CA=CB,CE=CD,EC+AC=32,∴DE+AB=2×32=6,∵∠ACB=∠ECD=90°,∠ACD=∠ACD,∴∠ACE=∠BCD
连接BE∵△CAB 和 △CDE 都为等腰直角三角形且∠ACB=∠DCE=90°∴∠ACD=∠BCE又∵AC=BC CD=CE∴△ACD
证明:连接BD因为∠ECD=∠ACB=90°所以∠ECA+∠ACD=∠DCB+∠ACD=90°所以∠ECA=∠DCB,又EC=DC,AC=BC,所以△ECA≌△DCB,从而AE=BD,∠BDC=∠AE
证明:连接BE∵∠ACB=∠ECD=90,AC=BC,DC=EC∴∠A=∠ABC=45,DE=√2CD∵∠ACD=∠ACB-∠BCD,∠BCE=∠ECD-∠BCD∴∠ACD=∠BCE∴△ACD≌△BC
因为没看到图,根据题意,应该是A、E在CD同侧吧?那么△AED为直角三角形△ACE和△BCD中CE=CD,CA=CB,角ACE=角BCD=90-角ACD所以△ACE≌△BCD(SAS).角EAC=角D
1、证明∵∠ACE=∠ECD-∠ACD,∠BCD=∠ACB-∠ACD,∠ACE=∠ECD∴∠ACE=∠BCD∵CA=CB,CD=CE∴△ACE≌△BCD(SAS)∵∠ACB=90,CA=CB∴∠BAC
(1)证明:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=90°,∴∠ACB-∠ACD=∠ECD-∠ACD,∴∠ACE=∠DCB,∵在△ACE和△BCD中AC=B
∵Δacb和Δecd都是等腰直角三角形∴∠dac=∠dec=45°∠ecd=90°∴daec四点共圆又∵∠ecd=90°∴ed为圆的直径∴∠ead=90°又∵Δacb是等腰直角三角形∴∠eac=90°
(1)证明:∵ΔABC和ΔECD都是等腰直角三角形,且∠ACB=∠DCE=90度∴AC=BC,CD=CD,且∠ACE+∠ACD=∠ACD+∠BCD=90度∴∠ACE=∠BCD∴ΔABC≌ΔECD(SA
由AE=AC,得:角AEC=角ACE;由BC=BD,得:角BDC=角BCD.所以,角ACE+角BCD=角AEC+角BDC,即,角ACB+角ECD=角DEC+角CDE=180°-角ECD.所以,角ECD
由题意知:ac=bc,dc=ec∵∠eca+∠acd=90∠bcd+∠acd=90∴∠eca=∠bcd∴△ace全等于bcd∴bd=ae再问:如图,已知ab等于ac,d是ab上的一点,de垂直bc于点
(1)由ABC为等腰三角形得,AC=BC;同理得CE=CD;角ACE=90-角ACD,而角BCD=90-角ACD,所以可得三角形ACE全等于三角形BCD.(2)由(1)可知角CAE=CBD=45,而角
DF=1/2AD(三线合一)∴脚A=60∴△ACD为等边 ∴脚ACD=脚CDA=60∴∠ECD=∠EDC=30(刚刚打错了)
取AB的中点F,连接CF.已知,△ACB和△ECD都是等腰三角形,∠ACB=∠ECD=90°,可得:△ACB和△ECD都是等腰直角三角形;所以,AF=BF=CF,DE²=2CD².