如图,过△ABC内任意一点O分别作DE∥BC,FG∥CA,HI∥AB,上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:50:14
如图,O为三角形ABC内任意一点,求证:OA+OB大于AC+BC急!

写反了吧AC+BC>OA+OB证明:延长BO交AC于D∵BC+CD>BD,AD+OD>OA∴BC+CD+AD+OD>BD+OA∴BC+AC+OD>OD+OB+OA∴AC+BC>OA+OB数学辅导团解答

如图,D为△ABC内任意一点,求证:∠BDC>∠A

证明:延长BD交AC于E.∵∠BDC是△DEC的一个外角,∴∠BDC>∠DEC,又∵∠DEC是△ABE的一个外角,∴∠DEC>∠A,∴∠BDC>∠A.

如图:O是△ABC内任意一点A'.B'.C'内分别是OA.OB.OC的中点.三角形ABC与三角形A'B'C'相似吗?为什

这和o无关啊……相似是必然的,中位线平行于底边,然后直接用平行或用AAA都可以证明相似~

如图,已知E为△ABC内任意一点,求证;BE+CE

延长be,与ac相交于fab+af>bfbf=be+ef即ab+af>be+efef+cf>ce相加ab+af+ef+cf>ce+be+efab+af+cf>ce+beab+ac>be+ce

如图,P为等边△ABC内任意一点,连接PA、PB、PC,求证:

解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A

如图,O为△ABC内一点,证OB+OC小于AB+AC

延长BO交AC于DAB+AD>BO+ODOD+DC>OCAB+AD+OD+DC>BO+DO+OCAB+AD+DC>BO+CO即AB+AC>BO+CO

已知:O为三角形ABC内任意一点,

分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD

如图 已知O是 三角形ABC 内任意一点 求证 OB+OC

有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O

已知o为三角形abc内任意一点,求证

1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,

几道初一、二图形题,(1)如图,△ABC是等边三角形,O为△ABC内的任意一点,OE//AB,OF//AC,分别交BC于

.因为平行先证明两个角都是60°,再由三角形内角和180°得出△OEF是等边三角形..∵∠ABC=∠ACB∠AED=∠ADEAB=ACAE=AD∴△ABE≌△ACD∴BE=CD又ED为公用线段所以得B

如图,O为三角形ABC内任意一点,求证:OA+OB<AC+BC

证明:延长AO交BC于D∵AC+CD>AD,BD+OD>OB∴AC+CD+BD+OD>AD+OB∵CD+BD=BC,AD=OA+OD∴AC+BC+OD>OA+OD+OB∴AC+BC>OA+OB数学辅导

如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.

证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图,在△ABC中,P是△ABC内任意一点,证明∠BPC>∠A

延长BP与AC交于D点,∠BPC是△PDC外角所以∠BPC>∠BDC而∠BDC是△ABP的外角,所以∠BDC>∠A故∠BPC>∠A.

已知:如图,O为三角形ABC内任意一点.求证:角BOC=角1+角2+角A

连接AO延长至BC于D,则可看到角BOD为三角形AOB的外角,角COD为三角形AOC的外角,所以角BOD等于角1加上角BAO,角COD等于角2加上角OAC,角BOD加上角COD既是角BOC,即可得所证

如图,点P是△ABC内任意一点,试说明PB+PC

证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所

如图,D是△ABC内任意一点,求证AB+AC>DB+DC

过D作DE‖AC交AB于E,过D作DF‖AB交AC于F,所以四边形AEDF是平行四边形.有AE=DF,AF=DE,△BDE中,BE+DE>BD,△CDF中,CF+DF>CD,∴BE+DE+CF+DF>

已知如图o为三角形ABC内任意一点求证

△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD

已知:如图,O为三角形ABC内任意一点,求证:角BOC=角1+角2+角A.

延长CO,交AB于D.角BOC=角1+角BDO(外角等于不相邻两内角和)角BDO=角A+角2(同上)所以,角BOC=角1+角2+角A.证毕!