如图7 在正方形ABCD中 点O为对角线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 12:19:21
(1)取PA中点E,连接EF、DE因PD=DC,而DC=AD(正方形)则PA⊥DE(三线合一) 因PD⊥平面ABCD则PD⊥AB(AB在平面ABCD上)又AD⊥AB(正方形)则AB⊥平面PA
(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛
设BP与AE的交点为O∵AB=BC,∠ABE=∠CBE=45°,BE=BE∴△ABE≌△CBE∴∠BAE=∠BCE∵P是AD中点易证:△ABP≌△DCP∴∠ABP=∠DCP∵∠BCE+∠DCP=90°
如图,EF是⊿ACD的中位线,OP=OD/2=6. MN=2PM=2√(12²-6²)=12√3.PB=18.MB=NB=√[18²+(
(1)连结BD,AC交于O.∵ABCD是正方形,∴AO=OC,OC=12AC连结EO,则EO是△PBD的中位线,可得EO∥PB∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC(2)∵PA⊥平面
旋转多少度没有指明,设想为90°.OC=√5,弧CC‘=1/2C圆=1/4*2π*√5=√5π/2.
如图,图在哪再问:没图,你会做吗?再答:太小看我了吧紫色为旋转后的图形,c点坐标不用说了吧,(2,-1)再问:确定图没画错吗?旋转180°再答:我仔细看了一下,弄错了,对不起。c点坐标应该为(2,1)
∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A
十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P
连结OE、OF可得四边形OEDF为正方形,连结OD交EF于G,则OG=1/2OD=6.连结OM,在Rt△OGM中,OM=12,OG=6,由勾股定理得MG=6倍根号下3,再由垂径定理可求得MN=2MG=
本题有两个答案:1/3,5/3,以P在圆弧左侧为例:先证OP⊥MG,△BHK相似于△BGM,,△BHK相似于△HAO,然后利用比的一些性质得BK=1/3具体证明如下:∵正方形ABCD,边长为2,O为A
⑴ T是CD中点,OT∥EC﹙中位线﹚TM∥CB﹙TC∥=MB MBCT是平行四边形﹚ ∴平面OTM∥平面BCF  
证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.  
(1)若OP的延长线与射线AB的延长线相交,设交点为H.如图1,∵MG与⊙O相切,∴OK⊥MG.∵∠BKH=∠PKG,∴∠MGB=∠BHK.∵BGBM=3,∴tan∠BHK=13.∴AH=3AO=3×
(1)a点坐标为(-2.5,5)代入y=ax^2得a=0.8(2)面积应该是150它这个图最后都能拼成6个小正方形.
设AB=a(向量),AD=b, AA1=c.OP=OA+tAN=-(a+b/2+c/2)+t(a+b/2)=(t-1)a-b/2+[(t-1)/2]cOQ=OC+sCM=(b-c)/2-s(
设正方形的边长为1,OD=x则有OC=1-x,OB=1+x三角形OBC中,由勾股定理有 OB^2=OC^2+BC^2所以 (1+x)^2=(1-x)^2+1^2得x=1/4所以OC
实际考察O到EF的距离关系:EF与圆O相切延长EF,CD交于H过C作CG⊥EF于G,连接CE,过E作EI⊥CD于I∵ABCD是正方形∴∠A=90°EI=AD=6∴勾股定理EF=5∴AF/FD=EF/F
证明:(1)取AB中点E,连接EF,DE∵E,F分别是AB,PB的中点,∴EF∥AP,∴AP和DF所成的角即为EF和DF所成的角,即∠DFE或其补角;由已知四边形ABCD是正方形,假设PD=DC=a,