如图9(1),(2),矩形纸片abc中,ab等于8,将纸片折叠
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:53:15
(1)∵四边形ABCD是矩形,∴AM∥DN.∴∠KNM=∠1.∵∠1=70°,∴∠KNM=∠KMN=∠1=70°,∴∠MKN=40°.(2)不能.过M点作ME⊥DN,垂足为E,则ME=AD=1.∵∠K
(1)图形平移的距离就是线段BF的长,又∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,∴BF=5cm,∴平移的距离为5cm;(2)∵∠A1FA=30°,∴∠GFD=60°,∠D=30°,∴∠
考点:翻折变换(折叠问题);等腰三角形的判定与性质;勾股定理;矩形的性质.分析:(1)首先根据矩形的性质可得AM∥DN,再根据平行线的性质可得∠KNM=∠1,由折叠可得∠KMN=∠1,进而得到∠KNM
小华将一张矩形纸片(如图1)沿对角线AC剪开,得到两张三角形纸片(如图2),其中∠ACB=a,然后将这两张三角形纸片按如图3所示的位置摆放,△EDF纸片的直角顶点D落在△ACB纸片的斜边AC上,直角边
(1)MB=MD,证明:∵AG的中点为M∴在Rt△ABG中,MB=12AG在Rt△ADG中,MD=12AG∴MB=MD.(2)∵∠BMG=∠BAM+∠ABM=2∠BAM,同理∠DMG=∠DAM+∠AD
(1)MB=MD,证明:∵AG的中点为M∴在Rt△ABG中,MB=12AG在Rt△ADG中,MD=12AG∴MB=MD.(2)∵∠BMG=∠BAM+∠ABM=2∠BAM,同理∠DMG=∠DAM+∠AD
(1)由图可知,第一次操作后剩下的矩形长为:原矩形的长-原矩形的宽,即为:2-a(2)①求出二次操作后剩下的矩形的边长,利用矩形的面积公式=长×宽即可因为第二次操作后剩下的矩形的边长分别为:2-a,2
连接MA,ME△AME是直角三角形△AMB∽△MECAB/BM=MC/CE9/3=3/CECE=1FE=8EF=xHF=(8-x)HF^2+HE^2=EF^2(8-x)^2+6^2=x^2x=25/4
∵∠ADC=∠AB′C=90°∴ADB′C四点共圆由托勒密定理得AD*B′C+AC*B′D=AB′*CDDB′=7/3cm
CN²+CE²=(CD-CN)²CN=15/16MN²=BC²+(1/4)²MN=√17/4CN/MN=15√17/681/4的推导过M点做
四边形EFGH是正方形证明:∵M、C关于DP对称 ∴DM=DC &nbs
(1)PN‖MN因为四边形ABCD是矩形,所以AD‖BC,且M在AD直线上,则有AM‖BC∴∠AMP=∠MPC,由翻折可得:∠MPQ=∠CPQ=∠MPC,∠NMP=∠AMN=∠AMP∴∠MPQ=∠NM
(1)证明:由翻折可知:△OPE≌△FPE,△ABP≌△DBP,∴∠OPE=∠FPE,∠APB=∠DPB,又∠OPE+∠FPE+∠APB+∠DPB=180°,∴∠EPB=∠EPF+∠DPB=∠OPE+
这还问啊?∵它是矩形卡片∴AB∥CDBC∥AD∴四边形ABCD是平行四边形又∵四边形ABCD是由两个全等三角形折叠而得∴DC=AD∴四边形ABCD是菱形(一组邻边相等的平行四边形是菱形)第2问是什么啊
设A折叠后落在BD上的A'点,AG=X,A'G=AG=X,BG=AB-AG=2-X,BD²=AB²+AD²=AB²+BC²=2²+1
【这不是我做的】是我回答的那个网页,一位热心网友~我只是把它们复制下来了.你可以去看看点个赞什么的哈哈哈~希望可以帮助你.
如图,自己看吧 点击图片查看大图
我们这样算,折一次剩余的矩形长为a,宽为1-a,再拆一次则长为1-a,宽为a-(1-a)=2a-1,再折一次则俩个都是正方形了,这个矩形的长等于二倍宽,那么也就是1-a=2(2a-1),解这个方程可得