如图abbccd分别与圆o相切于efg三点,且ab平行cd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:51:28
如图,AB,DC,CB分别与圆O相切与E,F,G,且AB∥CD.

知识点:切线长相等.证明:∵AB、DC、CB分别与圆O相切,∴BE=BG,CG=CF,∴BC=BE+CF.

如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

如图,已知三角形ABC,AC=BC=6,角C=90度,O是AB的中点,圆O与AC,BC分别相切于点D与点E.点F是圆O

延长AC.过点G作AB的平行线,交AC延长线于点H.因为GH//AB 所以△CGH相似于等腰直角△ACB,△DGH相似于△ADF因为AC=BC=6 ∠ACB=90度 D为

如图,PA,PB分别与圆O相切于点A、B,圆O的切线EF分别交PA、PB与点E、F,切点C在弧AB上,若PA长为2,则三

分析:由切线长定理知,AE=CE,FB=CF,PA=PB=2,然后根据△PEF的周长公式即可求出其结果.\x0d∵PA、PB分别与⊙O相切于点A、B,\x0d⊙O的切线EF分别交PA、PB于点E、F,

如图,已知圆O的直径AB=8,半径OC垂直AB,且OC是O1的直径,圆O2分别与圆O外切,与圆O1外切,与AB相切.

郭敦顒回答:(1)∵AB是⊙O的直径,半径OC⊥AB,且OC是⊙O₁的直径,∴⊙O₁与AB相切于O,⊙O₁与⊙O相切于C.(2)∵AB=8,⊙O₂分别与

如图,已知圆O的直径AB=8,半径OC垂直AB,且OC是O1的直径,圆O2分别与圆O内切,与圆O1外切,与AB相切.

易知R=4,r1=2令圆O2半径为r2连接OO2、O1O2过O2作O2D⊥OC,交OC于D依题并由勾股定理有:(r1+r2)^2-(r1-r2)^2=(R-r2)^2-r2^2解得r2=1

如图1,点O在角APB的平分线上,圆O与PA相切于点C.(1)求证:直线PB于圆O相切

(1)连结OC作OD⊥PBD为垂足∵圆O与PA相切于点C∴OC⊥PA又OD⊥PB点O在角APB的平分线上∴OD=OC即圆心O到直线BP的距离等于圆的半径∴直线PB于圆O相切2设PO交圆于F∵圆O与PA

如图,AB,DC,CB分别与圆O相切于E,F,G,且AB平行CD.(1)试判断BE,CF,BC之

e等于bg,cf等于cg,bg+cg=bc所以be+cf=bc再答:因为都与圆相切,所以角ebo=角gbo,角gco=角fco因为平行,所以角ebc+角gcf=180度,所以角obc+角bco=90度

如图,已知四边形ABCD的边AB,BC,CD,DA分别与圆O相切与E,F,G,H四点,求证:AB+CD=AD+BC

证明:∵四边形ABCD的边AB,BC,CD,DA分别与圆O相切与E,F,G,H∴AE=AH,BE=BF,CF=CG,DG=DH∴AH+DH+BF+CF=AE+BE+CG+DG∴AD+BC=AB+CD

如图,已知△ABC,AC=BC=6,角C=90°,O是AB中点,圆O与AC BC分别相切于点D与点E点F是圆O与AB一个

连接OD因为AC与圆O相切所以OD⊥AC因为∠C=90°,AC⊥BC,OA=OB所以OD//BC,OD=BC/2=3所以OF=OD=3,∠ODF=∠BGF,∠DOF=∠GBF因为∠OFD=∠BFG所以

如图,点o在∠APB的平分线上,圆o与PA相切于点c.

由题意可得:OE=3,PC=4连接OC,过C作CH垂直于PO因为圆o与PA相切于点c,所以角OCP=90因为OE=OC=3,PC=4,角OCP=90所以PO=5有面积法可得CH=12/5在RT三角形O

如图,AB是圆O的直径,CB、CD分别与圆O相切于点B、D,求证AD平行OC

是OP吧?连接OP,OD,∵PD=PB,OB=OD,OP是公共边∴△PDO≌△PBO∴∠POD=∠POB=∠BOD/2∵∠A=∠BOD/2∴∠A=∠POB∴AD‖OP

如图,弧AB所在圆的半径为R,弧AB的长为π/3R,圆O’和OA,OB分别相切与点C、E,且与圆O内切与点D,

先连接O’E、O’C再把O、O’连起来再延长于OB相交D那么D就是AB与小圆的相切点即O’D=r且

如图,点O在角APB的平分线上,圆o与PA相切于点c. (1)求证:直线PB与圆O相切;

(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;设PO交⊙O于F,连接CF.∵O

如图,弧AB所在圆的半径为R,弧AB的长为3分之πR,⊙O'和OA、OB分别相切于点C、E,且与⊙O相切于点D

由弧长公式,得,弧AB:nπR/180=πR/3解得n=60即∠AOB=60°连OD,O'C,则OD经过O'点因为OC,OB为切线所以∠COD=∠AOB/2=30°在直角三角形OCO'中,OO'=2C

如图△ABC的内切圆圆O与AC、AB、BC分别相切于点D、E、F,且AB=5cm

设AE为X所以AD=X=AECD=6-X=CFAB=5-X=9-(6-X)=BF由于切线长定理得到9-(6-X)=5-X解得X=1所以AD=1=AECD=5=CFAB=4=9-(6-1)=BF

如图,PA、PB分别与圆O相切于A、B两点,作直径AC,连接BC,求证:OP‖CB

证明:连接AP∵PA,PB是圆O的切线∴PA=PB,∠APO=∠BPO∴PO⊥AB∵AC是圆O的直径∴∠ABC=90°即BC⊥AB∴PO‖BC

如图,已知三角形ABC,AC=BC=6,角C=90度O是AB的中点,圆O与AC,BC分别相切于点D与点E.点F是圆O与

OD=3即圆的半径,则,OF=3BF=3根号2-3接着求出BF/FAAD/DC=1接着利用截线DFG与三角形ABC的梅涅劳斯定理,求出CB/BG接着就易求CG了不知道这是什么程度的题目,用了梅涅劳斯定

如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的圆O与BC相切于M与AB,AD分别交于EF

假设这个对角线是AC,反正也无所谓.连接OM,因为圆O与BC相切于M,所以OM垂直于BC,由于都是半径,所以OM=OA;设OA=x,则OM=x,由于AB=1,所以对角线=根号2,OC=根号2-x,由于

如图,等腰Rt△ABC的直角边AB、AC分别与圆O相切于点E、D,AD=3,DC=5,直线FG与AC、BC分别交于点F、

(1)连接OD,OE,∵等腰Rt△ABC的直角边AB、AC分别与圆O相切于点E、D,∴∠A=∠ADO=∠AEO=90°,∴四边形AEOD是矩形,∴AD=AE,∴四边形AEOD是正方形,∴OD=AD=3