如图1,点O在角APB的平分线上,圆O与PA相切于点C.(1)求证:直线PB于圆O相切
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 14:41:07
如图1,点O在角APB的平分线上,圆O与PA相切于点C.(1)求证:直线PB于圆O相切
2)PO的延长线于圆O交于点E.若圆O的半径为3,PC=4.求弦CE的长
3)如图2,过点E的切线与射线PA交于点M,EP与圆O交于另一点G,连接MO,CG.若CP=2CM,试探究线段CG与线段OM之间的关系,并证明
2)PO的延长线于圆O交于点E.若圆O的半径为3,PC=4.求弦CE的长
3)如图2,过点E的切线与射线PA交于点M,EP与圆O交于另一点G,连接MO,CG.若CP=2CM,试探究线段CG与线段OM之间的关系,并证明
(1) 连结 OC 作OD⊥PB D为垂足
∵ 圆O与PA相切于点C ∴OC ⊥PA
又 OD⊥PB 点O在角APB的平分线上
∴ OD=OC 即圆心 O 到直线BP的距离等于圆的半径
∴ 直线PB于圆O相切
2 设PO交圆 于F
∵ 圆O与PA相切于点C ∴OC ⊥PA 在直角△PCO中 PO²=OC²+PC ² =3² +4 ² =25
∴ OP=5 PF=5-3=2
易证△PCF∽△PEC CF:CE=PC:PE=PF:PC=1/2
设 CF=X 则 CE=2X
在直角△FCE中 EF²=FC²+EC ² 6² =X² +(2X²) X=6根号5/5 2X= 12根号5/5
弦CE的长12根号5/5
3 没图?
∵ 圆O与PA相切于点C ∴OC ⊥PA
又 OD⊥PB 点O在角APB的平分线上
∴ OD=OC 即圆心 O 到直线BP的距离等于圆的半径
∴ 直线PB于圆O相切
2 设PO交圆 于F
∵ 圆O与PA相切于点C ∴OC ⊥PA 在直角△PCO中 PO²=OC²+PC ² =3² +4 ² =25
∴ OP=5 PF=5-3=2
易证△PCF∽△PEC CF:CE=PC:PE=PF:PC=1/2
设 CF=X 则 CE=2X
在直角△FCE中 EF²=FC²+EC ² 6² =X² +(2X²) X=6根号5/5 2X= 12根号5/5
弦CE的长12根号5/5
3 没图?
如图1,点O在角APB的平分线上,圆O与PA相切于点C.(1)求证:直线PB于圆O相切
如图,点O在角APB的平分线上,圆o与PA相切于点c. (1)求证:直线PB与圆O相切;
如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;
如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB与⊙O相切;
如图,点o在∠APB的平分线上,圆o与PA相切于点c.
如图,点O在∠APB的平分线上,⊙O与PA相切于点C.
如图,点O在∠APB的平分线上,⊙O与PA相切与点C.
如图,PA,PB分别与圆O相切于点A、B,圆O的切线EF分别交PA、PB与点E、F,切点C在弧AB上,若PA长为2,则三
如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交
如图1,AB为圆O的直径,AD与圆O相切于点A,DE与圆O相切于点E,点C位DE延长线上一点,CE=CB.证BC为切线
如图角APB=60度,半径为1的圆o切PB于点p 若将圆o沿pb向右滚动,当圆o滚动到于pa相切时,圆心o移动的距离
如图,PA、PB分别与⊙O相切于A、B两点,且OP=2,∠APB=60°.若点C在⊙O上,且AC=2,则圆周角∠CAB的