如图ab是圆o的直径c是弧bd的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:46:11
连接BC.弧BC=弧CD,则BC=CD=6.AB为直径,则∠ACB=90°,AB=√(AC^2+BC^2)=10.由面积关系可知:AC*BC=AB*CE,8*6=10*CE,CE=24/5.
证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF连接OC,交BD于点M∵C是弧BD的中点∴OC⊥BD则O
延长CE交⊙O于G.连接BG、DG,∵EC⊥DC,∠DCE=90°,∴DG是直径,∠DBG=90°,∵AB是直径,DG是直径,∴弦BG=AD,∵OC⊥AB,∴∠BGC=45°,⊿GBF是等腰直角三角形
(1)延长CE交圆于M,则弧CD=弧CB=弧BM∴∠BCM=∠CBD∴CF=BF(2)连结OC交BD于N则△CFN≌△BFE∴BE=CN=3-1=2又OE=1∴CE=2√2∴BC=2√3
连接OD,∵C是弧BD的中点,∴∠COD=∠COB,∵∠A=∠1/2∠DOB,∴∠A=∠COB,∴OC‖AD
(1)延长CE交圆于M,则弧CD=弧CB=弧BM∴∠BCM=∠CBD∴CF=BF(2)连结OC交BD于N则△CFN≌△BFE∴BE=CN=3-1=2又OE=1∴CE=2√2∴BC=2√3
木分啊.[1].连接AC、OC、BC弧BC=弧CD,所以角DAC=角DAC,又因为角BAC=角OCA所以角DAC=角ACO,所以AD平行OC,所以角DAB=角COB三角形ADB与三角形OEC皆为直角三
证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠
连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD
解题思路:圆解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?a
1)证明:∵AC=CD\x0d∴弧AC与弧CD相等,\x0d∴角ABC=角CBD又∵OC=OB∴角OBC=角OCB\x0d∴角OCB=角CBD∴OC//BD(2)∵OC//BD不妨设平行线OC与BD间
连接OC∠CAB=30°OA=OC所以∠COD=60°又OB=BD所以OD=2OC所以OC垂直于CD所以DC是圆O的切线
证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD(2)连接OC∵弧CD=弧BD∴∠COD=∠BOD∵OA=OC∴∠A=∠C∵∠CO
(1)证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF(2)连接OC,交BD于点M∵C是弧BD的中点∴O
(1)证明:∵AB是⊙O的直径,∴∠ACB﹦90°又∵CE⊥AB,∴∠CEB﹦90°∴∠2﹦90°-∠ACE﹦∠A,∵C是BD的中点,∴BC=DC,∴∠1﹦∠A(等弧所对的圆周角相等),∴∠1﹦∠2,
连接AC,BD,AD是圆O的直径,所以∠ACD=∠ABD=90度,∠ACE=∠EBD=90度,C是弧BD的中点,圆周角∠CAD=∠CAB=∠CDB=∠CBD,∠ADC=∠ACD-∠CAD=90度-∠C
1)连AD,则∠ADB=90,即:AD⊥BC而BD=CD即:AD在三角形BAC中既是高又是中线所以,BAC是等腰三角形AB=AC2)显然,∠B=∠C
1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就
连接BE,AD因为D是弧AE中点,所以∠ABD=∠EBD=1/2∠ABE因为AB为直径,所以∠AEB=90°所以∠EAB=90°-∠ABE=90°-2∠ABD所以∠ECB=∠EAB+∠ABD=90°-