如图DE垂直AB的延长线于点E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:19:49
如图 在等腰RT△ABC中∠ACB=90 D为BC的中点DE垂直AB 垂足为点E 过点B作BF平行AC交DE的延长线于点

(1)证明:因为BF平行于AC所以∠BFC=∠FCA(两直线平行内错角相等)又DE垂直于AB,∠ABC=45°所以∠FBD=45°所以FB=BD即FB=DC(D为BC中点)且∠FBC为直角,AC=BC

如图,在ABC中·,AD平分角BAC,DG垂直BC于点G,DE垂直AB于E,DF垂直AC交其延长线于点F,BE=CF,求

连接BD、CD因DG垂直且平分BC,所以:BD=CDAD平分∠BAC且DE⊥AB于E,DF⊥AC于FDE=DF∠DEB=∠DFC=90°△BDE≌△CDF所以CD=DB所以CDB是等腰三角形∵DG⊥B

如图三角形ABC的边BC的垂直平分线DE与角BAC的平分线交于E点,EF垂直AB的延长线F,EG垂直AC交于G

证明:连接BE,CE∵E在∠BAC的平分线上∴EF=EG∵E在BC的垂直平分线上∴EB=EC∵∠EFB=∠EGC∴△EBF≌△ECG∴BF=CG(2)∵EF=EG,AE=AE,∠AFE=∠AGE∴△A

如图,AB是圆O的直径,AC是弦,角BAC的平分线AD交圆O于点D,DE垂直于AC,交AC的延长线于点E.

连接OD,BC相交于点F∵AD是角平分线∴D是弧BC的中点∴OD⊥BC∵AB是直径∴∠ACB=90°∴四边形CEDF是矩形OF是△ABC的中位线∴OF=1.5∴DF=2.5-1.5=1∴CE=1∴AE

如图,AB为圆O的直径,AC为弦,角BAC的平分线AD交圆O于D点,DE垂直于AC,交AC的延长线于点E,OE交AD于F

证明:连接OD,AD因为AB是圆O的直径所以角ADB=90度所以AD是三角形ABC的垂线因为角BAC=90度AB=AC所以三角形ABC是等腰直角三角形所以AD是等腰直角三角形ABC的垂线,角平分线所以

如图,已知在rt三角形abc中,角acb=90度,cd垂直于ab于d,e是ac中点,de的延长线与bc的延长线交于点f

⑴证明:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ACD=∠B,∵E为AC中点,∴DE=1/2AC=CE,∴∠FDC=∠ACD=∠B,又∠F=∠F,

已知:如图,四边形ABCD是平行四边形,DE//AC,交BC的延长线于点E,EF垂直AB于点F,求证:AD=DF (是用

用等腰三角形证明,从C点向AF作垂线为辅助线,垂足为H,由平行四边形ACED知CE=AD=BC;CH//EF,延长DC所以EBF中4个小三角形全等所以CH为BF中垂线,垂线又是中线,三角形BCF为等腰

如图,等腰梯形ABCD中,AD//BC,AB=DC,AC垂直BD,过点D作DE//AC交BC的延长线于E点.

因为AC//DE,AD//BE所以四边形ACED是平行四边形AD=CE=3,BE=10,AC=DE因为等腰梯形AC=BD既BD=DE因为AC垂直BD所以BD垂直DE所以三角形BDE是等腰直角三角形所以

直线与圆的位置关系如图,AB为圆O的直径,AD平分∠BAC交圆0于点D,DE垂直AC交AC的延长线于点E,FB是圆O的切

1.连接ODAO=OD,所以有:∠OAD=∠ODAAD平分∠BAC,有:∠CAD=∠BAD那么:∠DOB=∠OAD+∠ODA=2∠OAD=∠BAD+∠CAD=∠CAB得到:DO平行AC再因为DE垂直A

如图,在△ABC中,AB=AC,以AB为直径的圆O交AC于点D,过D做直线DE垂直BC于F,且交BA的延长线于点E.

是AB=BC吧?(1)证明:连接BD、ODAB为直径,∠BDA为直径所对圆周角所以∠BDA=90,BD⊥AC,BD为AC边上的高因为△ABC为等腰三角形,所以BD也为AC上中线,D为AC中点AB为直径

如图,在三角形abc中,ad平行于bc,角cba等于90度,de垂直ac于点f,交bc于点g,交ab的延长线于点e,且a

1、∵AC⊥DE,∴∠AFE=∠ABC=90°,∠EAF=∠CAB,AE=AC,∴△AEF≌△ACB﹙AAS﹚,∴AF=AB,连接AG,在直角△ABG与直角△AFG中,AG=AG,AB=AF,∴△AB

19.如图,在等腰Rt三角形ABC中,D为BC中点,DE垂直AB,垂足为E,过点B做BF平行AC交DE的延长线于点F,连

1)因为DE⊥AB所以角FDB=45°又BF平行AC得到三角形DBF是等腰直角三角形所以BD=BF由AC=BC所以三角形ACD和CBF全等所以角CAD=角FCB角CAD+角ADC=角FCB+角ADC=

如图,BD=CD,角ABD=角ACD,DE,DF分别垂直于AB及AC交延长线于点E,点F.

证明:∵∠ABD=∠ACD∴∠EBD=∠FCD(等角的补角相等)∵BD=CD(已知),∠E=∠F=90°∴△BDE≌△CDF(AAS)∴DE=DF(全等三角形对应边相等)

如图AB是圆O的直径,PA PC分别与圆O相切于点A,C,PC交AB的延长线于点D,DE垂直PO交PO的延长线于点E.

再问:这是错的。。。再答:朋友,你认为哪里错了呢,有什么根据呢?最好能指出来。我已对这个解答进行了全面的检查,是地毯式的、逐字逐句的检查,经检查,未发现有差错。不过也许百密也有一疏,如果你真的发现有错

如图,四边形ABCD是菱形,DE垂直AB交BA的延长线于E,DF垂直BC,交BC的延长线于F.DE于DF的大小有什么关系

DE=DF证明:∵四边形ABCD是菱形∴AD=CD,∠DAB=∠DCB(菱形邻边相等,对角相等)∴∠DAE=∠DCF(等角的补角相等)∵DE⊥AB,DF⊥BC∴∠DEA=∠DFC=90°∴△DEA≌△

已知如图 在三角形ABC中 AB=AC D为BC上任意一点 DE垂直于BC 交AC于点F 交BA的延长线于点E 求证 A

角E=角AFE=角DFC角E+角B=90°角C+角CFD=90°计算得出角B=角C故AB=AC再问:求证是AE=AF再答:∵AB=AC∴∠B=∠C∵DE⊥BC∴∠EDB=∠EDC=90º∴1

选修4-1:平面几何如图AB是⊙O的直径,弦BD,CA的延长线相交于点E,EF垂直BA的延长线于点F.(I)求证:∠DE

(Ⅰ)证明:连接AD,BC.因为AB是⊙O的直径,所以∠ADB=∠ACB=∠EFA=90°,故A,D,E,F四点共圆,∴∠DEA=∠DFA;(Ⅱ)在直角△EFA和直角△BCA中,∠EAF=∠CAB,所

如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证.

证明:(Ⅰ)连结AD,∵AB为圆的直径,∴∠ADB=90°,又∵EF⊥AB,∴∠EFA=90°,∴A、D、E、F四点共圆,∴∠DEA=∠DFA.(Ⅱ)∵A、D、E、F四点共圆,∴由切割线定理知BD•B

如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE平行AB,过点E作EF垂直DE,交BC的延长线于点F.1

/>①∵△ABC是等边三角形∴∠B=∠ACB=60°∵DE//AB∴∠EDF=∠B=60°∵EF⊥DE∴∠DEF=90°∴∠F=90°-∠EDF=30°②∵∠EDC=∠ECD=60°∴△CDE是等边三