如图rt△abc中,AB垂直于BC,AB=6,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:42:10
如图,在RT三角形ABC中,角ACB=90度,CD垂直AB于D,AC=3,AB=5,则AD等于……

(1)因为AC=3,AB=5,所以BC=4根据面积相等因为AB×CD=AC×BC即5×CD=12CD=5分之12所以根据勾股定理AD=1.8(2)因为BC=4,所以AC+AB=8,有勾股定理得AB的平

已知如图,在Rt△ABC中,∠ACB=90°,CD垂直AB于D,AB=13,BC=5,求CD的长.

AC^2=AB^2-BC^2=13^2-5^2=12^21/CD^2=1/BC^2+1/AC^2=1/25+1/144=169/(25*144)CD=5*12/13=60/13推导:AB^2=BC^2

如图,已知RT三角形ABC中,角ACB=90度点D是AB上一点,AE垂直于CD,AC的平方=AB•

稍等再答:证明:∵AE⊥CD,∠ACB=90∴∠AEC=∠ACB=90∵AC²=AB•CE∴AC/AB=CE/AC∴△ABC∽△CAE∴∠ACE=∠BAC∴AD=BD∵∠ACE+

如图,RT三角形ABC中,角C=90度,CD垂直AB于D,AB=13,CD=6,则AC+BC等于

设BC=a,AC=b根据三角形面积公式得到S=1/2ab=1/2AB*CD=1/2*13*6ab=78有由直角三角形三边关系得到a^2+b^2=AB^2(a^2+2ab+b^2)-2ab=13*13=

如图 在rt △abc中 ∠acb=90°,cd垂直ab于d,已知ad=4,bd=1求cd的长

CD=2三角形ADC相似于三角形CDB所以AD/CD=CD/BDCD^2=AD*BD=4所以CD=2

如图,已知在RT△ABC中,∠ACB=90°,CD垂直AB于D,DE垂直AC于E,求证:BC²/AC²

证明:∵∠ACB=90°,CD垂直AB于D∴∠ADC=90,∵∠DAC=∠CAB∴△DAC∽△CAB,则BC:AC=DC:DA∵在RT△ADC中,DE⊥AC∴DC²:DA²=CE:

如图,在RT三角形ABC中,∠ACB=90°,CD垂直AB于D,AC=3 AB=5则AD为多长?

三个三角形互为相似,所以AD:AC=AC:AB代入数据得出结论9/5

如图,RT三角形ABC中,角C=90度,CD垂直AB于D,AB=13,CD=6求AD,BD的长,

设AD=x,则BD=13-x根据题意可得CD^2=AD*BD36=x(13-x)x^2-13x+36=0x=4或x=9所以AD=4,BD=9或AD=9,BD=4

如图,在△ABC中,AC=BC,∠C=Rt∠,AD是∠CAB的平分线,DE垂直AB于E

⑴∵DE⊥AB,∠C=90°,AD平分∠BAC,∴CD=DE,∵AC=BC,∴∠B=45°,∴ΔBDE也是等腰直角三角形,∴BE=DE,∴CD=BE.⑵在ΔADC与ΔADE中,∠DAE=∠DAC,AD

如图,rt三角形abc中,角acb=90°,cd垂直ab于d,ab=2根号6,ac=2倍根号6

∠ACB=90°,斜边AB与直角边AC都为2√6,这个条件矛盾.

已知:如图,在Rt三角形ABC中,AB=AC,角BAC=90度,点D为BC上任一点,DE垂直于AB于E,DF垂直AB于E

△MEF必是等腰直角三角形.证明:不失一般性令D在CM之间.因为DE⊥AC,DF⊥AB,又∠A=90°,所以AE=AB-AF=BF又在等腰Rt△ABC中M为BC中点,所以AM=BM,加上∠EAM=∠F

三角形相似证明,如图,在Rt三角形abc中,角acb等于90度cd垂直于ab

(1)因为,CD⊥AB则,∠ACB=∠CDB=90°即,∠A+∠ABC=∠BCM+∠ABC=90°所以,∠A=∠BCM①因为,CD⊥AB,DH⊥BM则,∠CDB=∠BHD=90°即,∠DBM+∠EDB

如图,在RT△ABC中,CD是斜边AB上的高,∠ABC的平分线BE交CD于点G,GF//AC交AB于点F,求EF垂直于A

∵CD是Rt△ABC的斜边AB上的高∴∠A=∠BCG(都是∠ABC的余角)又BE平分∠ABC∴△ABE∽△CBG∵GF∥AC∴△ABE∽△FBG∴△CBG∽△FBG又BG=BG∴△CBG≌△FBG∴B

如图,Rt△ABC中,∠ACB=90°,CD垂直于AB交AB于D,E为BC中点,连ED并延长交CA的延长线于F.求证:A

∵CD⊥AB即△BCD是直角三角形∵E是Rt△BCD斜边BC的中点∴DE=1/2BC过C做CG∥DF交AB于G∵为BC中点∴DE是△BCG的中位线∴DE=1/2CG∴BC=CG又∵CG∥DF∴△ACG

如图,已知Rt三角形中,角ABC等于90°,CD垂直AB交AB于点..

∵CD⊥AB即△BCD是直角三角形∵E是Rt△BCD斜边BC的中点∴DE=1/2BC过C做CG∥DF交AB于G∵为BC中点∴DE是△BCG的中位线∴DE=1/2CG∴BC=CG又∵CG∥DF∴△ACG

如图在Rt三角形ABC中角ACB=90度,CD垂直AB于D,BE平分角ABC交AC于E,交CD于H,EF垂直AB于F,连

证明:∵EF⊥AB∴∠EFB=∠ECB=90°∵BE平分∠ABC∴∠FBE=∠CBE又∵BE=BE∴△EFB≌△ECB(AAS)∴EF=EC,∠BEF=∠BEC又∵EH=EH∴△FEH≌△CEH(SA

如图,在RT三角形ABC中,角AVB=RT角,CD垂直AB于D,AD=8,BD=4,求SINA的值

CD^2=BD*CD=8*4=32AC^2=AD^2+CD^2=8^2+32=96AC=4√6所以:SINA=CD/AC=32/(4√6)=8/√6

如图,在Rt三角形ABC中,角ABC等于90度,CD垂直于AB,

相等,因为共圆弧对应角相等,即角DFE=角BCD,角BCD=角BAC.再问:是要求相似三角形吗再答:不需要。