如图①,过⊙O上一点P做两条弦PA,PB.若PA=PB,则PO平分∠APB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:44:26
如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点

证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°

如图过o上一点p作两条弦pa pb若pa pb则po平分apb为什么

(1)(2)问都是作垂线</p1,作OC垂直于AP,OD垂直于BP,用等弦所对的弦心距相等,说明OC=OD,所以PO平分角APB.(到角两边距离相等的点在这个角的平分线上)2也是一样的,做垂线3

17(福建)南平已知:如图① , A是半径为2的⊙O上的一点,P是OA延长线上的一动点,过P作⊙O的切线,切点为B、设P

(1)解法一:连接OB.∵PB切⊙O于B,∴∠OBP=90°,∴PO^2=PB^2+OB^2,∵PO=2+m,PB=n,OB=2,∴(2+m)2=n2+2^2m^2+4m=n2;n=4时,解,得:m1

已知:如图,⊙O的直径AB=10,P为OA上一点,弦MN过点P,且PA=2,MP=2√2,求弦MN和弦心距OD的长

∵OA=5PA=2∴OP=3PB=8∴2√2PN=2×8PN=4√2MN=6√2MD=3√2OD=√【5²-(3√2)²】=√7

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图,在矩形ABCD中,AB=3,BC=4,P是边AD上一点,过三点A,B,P作圆O 求当CD与圆O相切时,BC被圆O截

设AP=X时,圆O与CD切于FOP=OF=4-AP/2=4-0.5*X;OP=BP/2=0.5√(X²+3²);4-0.5*X=0.5√(X²+3²);X=55

如图,在⊙O中,AB是直径,P为AB上一点,过点P作弦MN,∠NPB=45゜.若AP=2,BP=6,求MN的长.

过点O作OD⊥MN于点D,连接ON,则MN=2DN,∵AB是⊙O的直径,AP=2,BP=6,∴⊙O的半径=12(2+6)=4,∴OP=4-AP=4-2=2,∵∠NPB=45゜,∴△OPD是等腰直角三角

如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线

是这个么?已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE

如图,P是圆O外一点,求作:过点P作圆O的切线

连接圆心和P点,用尺规画出这一线段的中点,以这条线段的中点为圆心,这条线段的一半长为半径作圆,辅助圆与已知圆的交点就是切点,然后连接就可以了

如图,以圆O外一点P引圆O的切线PA,PB,切点分别为A,B,Q为劣弧AB上一点,过Q做圆O的切线交PA,PB于E,F,

∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=

如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两

过B作BE⊥X轴于E,过C作CF⊥X轴于F,过D作DQ⊥X轴于Q,∵OD=AD=3,∴OQ=1/2OA=2,DQ=√(OD^2-OQ^2)=√5,二次函数最大值之和就是BE+CF的值,设P(m,0),

直线与圆:如图,BD 是⊙O的直径,OA⊥OB,M是劣弧AB上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与

1、连接MB,角PMN=角MBD又角BMD=角NOD=90所以角MBD=角PNM=角PMN所以PM=PN2、连接OM交BC于E因为∠OMP=90,BC‖MP所以OM垂直BC又角BOM=角MPO所以三角

如图1 过圆O上一点P做两条弦PA,PB,若PA=PB,则PO平分∠APB,为什么

这是作业本上的题目把1):作oc垂直AP于C,作OD垂直PB于D.∵PA=PB∴OC=OD(在同圆或等圆中,相等的弦的圆心距相等)∴∠APO=∠BPO(到角两边距离相等的点在角平分线上)(2):作OE

如图,在圆o的直径上取一点p,以p为圆心,以ap为半径作圆p,过a点的两直线分别与圆o,圆p交于c

我正在解答您的问题,请稍候.再问:再答:如图,过点A作圆O的切线AM,则OA⊥AM,即PA⊥AM,∴AM是圆P的切线∴∠1=∠D(弦切角定理)同理∠1=∠EFA,∴∠D=∠EFA,∴EF∥CD&nbs

如图,OA、OB是⊙O的半径,且OA垂直OB,操作:在OB上取任意一点P,AP的延长线交⊙O于C,过点C作⊙O的切线CD

DC=DP.连接OC.因为CD是圆的切线,所以OC⊥CD,即∠DCP+∠ACO=90°又OA⊥OB,有∠A+∠APO=90°.OA=OC,有∠A=∠OCP,因此∠DCP=∠APO=∠DPC,于是DC=

如图:已知⊙O半径为8cm,P为⊙O外一点,PO=16cm,PA、PB切⊙O于A、B,M为弧AB上一点,过M作⊙O切线交

(1)连接AO、BO、PO,则OA⊥AP,OB⊥BP.在RT△AOP中,AO=8cm,PO=16cm,所以,∠APO=30°.同理,∠BPO=30°.因此,∠APB=60°.(2)连接OM、OE、OF

如图,AB为⊙O的直径,C在⊙O上,并且OC⊥AB,P为⊙O上的一点,位于B、C之间,直线CP与AB相交于点Q,过点Q作

证明:如图,连接PB、BR,则∠APC=45°,∠APB=90°;故∠BPQ=180°-∠APC-∠APB=45°;又∵∠APB=90°=∠BQR,∴B、Q、R、P四点共圆;于是∠BRQ=∠BPQ=4

已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作作半圆O的切线分别交过A、B两点的切线

2002武汉的如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于点N,

如图,A是半径为2的圆O上的一点,P是OA的延长线上的一点,过点P做圆O的切线,切点为B,设PA=m,PB=n

(1)连接OB,则△PAB是直角三角形,所以PO的平方=PB的平方+OB的平方所以(m+2)^2=2^2+4^2,解得,m=2+2根5.(2)存在这样的点C,使△PBC为等边三角形,点c也是切点,且角