如图△abc内接于圆o ad为角bac的平分线 d作de垂直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:19:11
已知:如图,三角形ABC内接于圆O,D为BS弧的中点,AE垂直BC于E,求证:AD平分角OAE

我也是刚刚做到这道题其实只要连接OD,OA=OD,所以等腰三角形,两角相等又D是弧BC中点,根据垂径定理推论,可知OD所在的直径垂直BC,又AE垂直BC于E,有两个直角,所以平行...接下来会了吧~~

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,已知△ABC内接于圆O,AE为直径,AD为BC上的高.求证:AB·AC=AE·AD

因为角aeb=角acb因为ae直径AD为BC上的高所以角aeb=角aec=角acb所以三角形abe和adc相似所以AB/AE=AD/AC得AB·AC=AE·AD

如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.

(1)△为内接于半圆,AB为直径得,∠CAB+∠CBA=pi/2;再由∠MAC=∠ABC,所以:∠MAB=pi/2,即MA垂直于圆的直径,所以炎圆的切线(2)由∠DEB为直角得,∠EDB+∠DBA=p

如图 △ABC内接于圆OAD平分∠BAC延长BC到P 使PD=PA求证:PA为圆O的切线

延长AO交园边于点K,连接KC并延长交AP于E\x09\x09\x09\x09∵∠B=∠K(两角都是弦AC的圆周角相等)\x09\x09\x09\x09∵∠PDA=∠PAD ( P

如图,已知△ABC的三个顶点在⊙O上,AD是BC边上的高,E为弧BC的中点,求证:AE平分∠OAD

在△ABC中,分别以△ABC的三边为边的三个等边三角形的面积满足S1+S2=S3,则△ABC是Rt△,∠ACB=Rt∠.这个命题是真命题.证明:S3=c*h3S2=a*h2S1=b*h1,h1=√3*

变式:如图,若△OAD≌△OBC,且∠ BOC=65°,∠C=20°,求∠OAD的度数.

图呢?图呢?亲,不带这样玩的根据你的描述角OAD不是20度就是95度了,角BOC和角AOD应该是顶角,不知道是不是对顶角

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D

图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠

已知:如图,△ABC内接于圆O,AB为直径,∠CBA的角平分线交AC于点F,交圆O于点D,DE⊥AB于E,且交AC于P,

(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=

如图,三角形abc是园o的内接△,直径gh垂直ab,交ac与d,gh,bc的延长线交与e,求角oad=角e

1.如图(图略),∵⊙O中,GH是直径,GH⊥AB,∴弧AH=弧AB,∴∠AOH==(1/2)AOB,∵∠E=∠ACB-∠EDC,又∠ACB=(1/2)AOB=∠AOH,∠EDC=∠ADH,∴∠E=∠

如图△ABC内接与圆o,AD垂直于bc于

角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8

已知△ABC的三个顶点在⊙O上,AD是BC边上的高,E为弧BC中点.求证:AE平分角OAD

连结OE,交BC于F,AE与BC交于G,∵OA=OE,则∠OAE=∠E∵E为弧BC中点,∴OE是BC的垂直平分线∵∠FGE=∠DGA,∴Rt△FGE∽Rt△DGA,∴∠E=∠DAE∴∠DAE=∠OAE

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图,已知△ABC内接于圆o,I为△ABC的内心,连接AI并延长分别交BC和圆o于E、D两点,连接BD、CD,求证:

证明:(1)∵内心即角平分线的交点∴∠BAD=∠CAD,∴BD=CD【相等圆周角所对的弦相等】∠ABI=∠EBI∵∠BID=∠BAD+∠ABI∠DBI=∠DBC+∠EBI∠DBC=∠CAD=∠BAD【

如图已知,三角形ABC内接于圆o,弦BC所对的劣弧为120度角ABC,角ACB的平分线BD,CE分别交AC于D交AB于E

∵劣弧BC的度数为120°∴∠BAC=60°∴∠ABC+∠ACB=120°∵BD平分∠ABC,CE平分∠ACB∴∠CBD+∠ECB=12(∠ABC+∠ACB)=60°∴∠CFD=60°∴∠BFE=60

已知三角形ABC内接于圆O,AD垂直于BC,D为垂足,AE平分∠OAD交圆O于点E.求证:弧CE=弧BE

连结OE∵OA=OE∴∠E=∠OAE∵AE平分∠OAD∴∠E=∠OAE=∠DAE∴OE‖AD∵AD⊥BC∴OE⊥BC∴弧CE=弧BE

如图三角形ABc内接于圆O且AB为圆0的直径角AcB的平分线交圆

第一问很好证.∵∠BCD=∠BAD,∠BCD=∠ACD∴∠BAD=∠ACD又PD圆的切线∴∠PDA=∠ACD∴∠PDA=∠BAD∴DP∥AB

如图,等边三角形ABC内接于圆O,边长为4cm,求图中阴影部分的面积

三角形的高为2倍根号3,内切圆的半径是2倍根号3/3,则阴影面积为12倍根号3-4π/3