如图△ABC内接于圆OAH⊥

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:22:02
如图,矩形EFGH内接于△ABC,AD⊥BC于点D,交EH于

解题思路:结合三角形相似进行求解解题过程:解:设EF=x,则EH=,DP=x,AD=AP+DP=16+x,∵EH∥BC,∴△AEH∽△ABC,∴,∴解得,x=4或x=-8(负值舍去)即DP=4∴最终答

圆,已知,如图△ABC内接于圆O,OH⊥ AC于H,过A点的切线与OC的延长线交于点D,∠B=30度,OH=5根号3

∠AOC=2∠B=60°圆心角等于圆周角的2倍,所以∠AOC=60度∵AO=CO,OH⊥AC∴∠AOH=30°、△OAC为等边三角形,所据此求出OA长度,可以计算出劣弧弧AC的长;根据含30°角的直角

已知:如图,△ABC内接于⊙O,E为弧BC的中点,AD⊥BC于D

延长AO交圆O于F,连接BF∵AF是直径∴∠ABF=90°∴∠BFA+∠BAF=90°∵AD⊥BC∴∠ACB+∠DAC=90°∵∠ACB=∠BFA∴∠BAF=∠DAC∵E为弧BC中点∴∠BAE=∠CA

如图,已知△ABC内接于圆O,∠CBD=∠A,判断BD于圆O的位置关系,并说明理由

BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,三角形ABC内接于圆O,AD是直径,AD BC相交于点E.角ABC=50度求角BAC 角BCA

你这一题缺少条件,怎么缺少条件呢,我给你讲讲其实这道题角ABC=50度这个条件是可以变动的,你可以把B点画到圆弧AD的任意一点中,想想看,当把点B画到A点的旁边一点点,再构造一个角ABC=50度,同样

如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点P

连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4

已知:如图BE、BD是△ABC中∠ABC的内、外角平分线,AD⊥BD于点D,AE⊥BE于点E,

证明:因为BE,BD分别平分∠ABC和∠ABM  (∠ABM是∠ABC的外角),所以:∠DBE=90°而∠D=∠AEB=90°所以:四边形DBEA是矩形.所以:DE=AB而:∠AB

如图,△ABC内接于圆O,AE是圆O的直径,AD⊥BC于点D.∠BAE与∠CAD相等吗

∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

如图 AE是圆O的直径,△ABC内接于圆,AD⊥BC于D试说明∠1=∠2

∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD即角1=角2

1.如图,已知△ABC内接于圆O,D是弧BC上一点,AD交BC于E,且BC平方=DE*DA,BI平分∠ABC交AD于I,

1因为∠ABC=∠ADC(同弧所对应的圆周角相等)∠CED=∠AEB(对顶角)所以△ABE与△CDE相似,根据对应边成比例得出:CD/AB=DE/BE,即CD/DE=AB/BE——式1已知DC^2=D

如图,已知△ABC内接于⊙O,AE平分∠BAC,且AD⊥BC于点D,连接OA.

证明:连接OE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴BE=CE,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OA=OE,∴∠OEA=∠OAE,∴∠OAE=∠EAD.

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点

(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D

如图,△ABC内接于⊙O,高AD,BE相交于点H,延长AD交△ABC的外接圆于点G,

(1)连接BG,根据同一弧所对应的圆周角相等,可推出∠BGA=∠ACB再看△AHE和△ACD,共用∠DAC,而且∠BEC和∠ADC都是直角则△AHE∽△ACD,推出∠AHE=∠ACB,根据之前∠BGA

已知:如图,△ABC内接于圆O,AB为直径,∠CBA的角平分线交AC于点F,交圆O于点D,DE⊥AB于E,且交AC于P,

(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=

如图△ABC内接与圆o,AD垂直于bc于

角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8

已知:如图,△ABC内接于圆O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连结AD,AM

证明:连接AF,∵BF=AC,∴弧AB+弧AF=弧AF+弧CF.∴弧AB=弧CF.∴∠F=∠FBC.又∵∠CAM=∠CBM,∴∠F=∠MAN.∵∠AMF=∠NMA,∴△AMF∽△NMA.∴AM/NM=

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图,三角形ABC内接于○O,AB=AC,AO⊥BC于D,

连接AO并延长与圆交与M,连接BM则△ABM相似△ADCAB:DA=AM:ACAB×AC=AM×AD=10×2=20

(2014•汕头二模)如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2

(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE.∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC.∵AB是圆O的直径,∴BC⊥AC,且DC∩AC=C.∴BC⊥平面ADC.∵DE∥