如图三角形ABC和三角形DEC均为等边三角形,点A.D.E三点在一条直线上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:52:34
设△DEC中,DE=EC=2因为是正方形可知正方形的边长为1所以AB=BH+AH=√2EH+HG/√2=√2+1/√2=3√2/2所以面积之比=边长之比的平方=[(3√2/2):2]^2=9:8再问:
∵△ABC≌△DEC,∴∠ACB=∠DCE,∴∠ACB-∠ACE=∠DCE-∠ACE,即∠ACD=∠BCE.
45标ab线上的点为f标ac线上的点为g标ec线上的点为h三角形gch和三角形dfh全等三角形bef和三角形gch全等所以三角形dec的面积和三角形abc的面积相等
三角形ADE的面积为三角形ABC面积的一半24/2=12三角形DEC的面积为三角形ADE面积的一半12/2=6
△MNC是等腰直角三角形.证明如下:因为,在△CBE和△CAD中,CB=CA,∠BCE=90°-∠ACE=∠ACD,CE=CD,所以,△CBE≌△CAD,可得:BE=CD,∠BEC=∠ADC;因为,在
证明:因为三角形ABC,三角形DEF是等边三角形所以DC=EC,AC=BC,角ECD=角ACB=60度所以角ECA=角DCB在三角形AEC与三角形DBC中,DC=EC,AC=BC,角ECA=角DCB所
∵三角形ABC≌三角形DEC,CA和CD,CB和CE事对应边∴∠ACB=∠DCE∵∠DCB=∠BCD∴∠ACD=∠BCE
三角形ACB=DCE.角度ACB=90度,角度DCB=126度.【角度DCB-角度ACB=角度DCA.126-90=36度】角度DCE=ACB=90度.角度ACB=90-36=54度
相等,因无图,故分两种情况,理由如下:①∠ACD和∠BCE无重叠部分,∵△ABC≌△DEC,∴∠BCA=∠ECD,∴∠BCA+∠ACE=∠ECD+∠ACE(根据实际图形,或同加∠BCD),即∠ACD=
因为图形①的面积=图形②的面积,图形①的面积+图形②的面积=图形③的面积=图形④的面积,图形③的面积+图形④的面积=阴影部分的面积,所以三角形DEC的面积=图形①的面积+图形②的面积+图形④的面积+阴
三角形ABC和三角形DEC的面积比是9:8,就应该出来了吧,图片应该是这样吧
∵S△DEC=S△BDE,∴BD=DC∵S△CDE=S△ACE∴S△ACE:S△BCE=1:2,∴AE:BE=1:2S△ADE:S△BDE=1:2,不妨设S三角形DEC=S三角形BDE=S三角形ACE
等边三角形是三角形BDP和三角形CEP∵BE是∠B的角平分线∴∠DBP=∠PBC又∵DE平行BC∴∠DPB=∠DBP(两直线平行,内错角相等)∴PD=DB同理PE=EC∴DB+EC=DE
如图:S阴影=12S1,S阴影=49S2,因为12S1=49S2,则:S2:S1=12:49=9:8;故答案为:9:8.
因为图形①的面积=图形②的面积,图形①的面积+图形②的面积=图形③的面积=图形④的面积,图形③的面积+图形④的面积=阴影部分的面积,所以设图形①的面积为s,则三角形DEC的面积=图形①的面积+图形②的
作AF垂直BC于F,作EH垂直BC于D.因AF垂直BC、EH垂直BC,则有:△AFC相似△EHC又因为:CE=1/2AC,所以EH=1/2AFS△DEC=1/2*DC*EH=1/2*1/4BC*1/2
证明:我按一种图形来解,其实所有情况都不例外的,详见附图过G作GM⊥BC,过E作AB的垂线,交AB的延长线于点N,∵∠GBM=∠NBM-∠GBN=90°-∠GBN=∠GBE-∠GBN=∠NBE又∵∠G
证明:∵等边△ABC,等边△DCE∴AC=BC,DC=EC,∠BAC=∠ABC=∠ACB=∠DCE=60∵∠ACE=∠DCE+∠ACD,∠BCD=∠ACB+∠ACD∴∠ACE=∠BCD∴△ACE≌△B