如图圆o的半径为2ob=4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:44:18
如图,线段AB与圆O相切于点C,连接OA,OB.OB交圆O于点D,已知OA=OB=6,AB=6根3.求圆O的半径 (2)

1.连接OC因为OA=OB所以AC=BC=AB/2=3跟3且OC垂直AB所以半径=OC=跟号(6*6-3跟3*3跟3)=32.连接DC,阴影面积=三角形OCB面积-扇形面积因为OB=6,OC=3,所以

三角形ABC的外接圆圆心为O且半径为1,若3OA+4OB+5OC= 0,则OC与AB的数量积为

因为3OA+4OB+5OC=0所以5OC=-3OA-4OB因此(5OC)^2=(-3OA-4OB)^2即25=9+24OA*OB+16所以OA*OB=0又向量AB=OB-OA所以OC与AB的数量积=O

OA OB 是圆O的半径 OA垂直于OB C为OB延长线上一点 CD切圆O于点D E为AD与OC

分析:根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO,从而得到∠DEC=∠ADC,根据三角形中,等角对等边即可证明△CDE是等腰三角形,即CD=CE.∵CD切

如图,圆O是以原点O为圆心,半径为根号2的圆,直线AB交坐标轴于A,B两点,OB=4,tan角BAO=2,P为直线AB上

1、不知道A在x轴上,还是y轴上我只能猜A在x轴上且在正半轴,B在y轴上了,且在正半轴.OB=4tan∠BAO=2则OA=2B坐标(0,4)A坐标(2,0)当角CPD=90度时,那么四边形CODP是正

如图,△ABC中,角ABC=90°,O为BC上一点,以O为圆心,OB为半径的圆O切AC于M,交BC于D,CD=2,OD=

(1)连OM∵∠ABC=90°且○O与AC相切于M∴AB=AM∵OD=3,CD=2∴BO=MO=3,OC=5在Rt△OMC中CM=根号(OC^2-OM^2)=根号(5^2-3^2)=4tan∠ACB=

如图,CD为⊙O的直径,OB是⊙O的半径,OA⊥OB,作AE⊥CD于点E,BF⊥CD于点F,已知AB=5√2,则CE+A

CE+AE+BF+DF=CE+OE+OF+DF=CD=圆直径=10~一线三等角那三个直角三角形都是等腰直角~所以有了最上面的~

一道向量题:三角形ABC内接于以O为圆心,1为半径的圆,且3OA+4OB+5OC=0.求:

即3OA+4OB=5CO,因为345刚好是一组勾股数,所以OA与OB垂直,所以OA.OB=O.同样利用345组成的夹角可求得OB.OC=-4/5,OC.OA=-3/5.所以AOC的正弦值为3/5,BO

如图,角ABC=90度,点O为射线BC上一点,OB=4,以点O为圆心,2倍根号下为半径作圆O交BC于点D,E .当射线B

将射线BA与圆O的切点记为点F连接OF因为BA与圆O相切所以OF⊥BA因为圆O半径为2倍根号2所以OF=2倍根号2因为OB=4,OF=2倍根号2所以∠OBA=45°所以@=45°

已知OA、OB是圆O的两条半径,C、D为OA、OB上的两点.且OC=OD,求证AD=BC

证明:因为OA,OB都是圆O的半径所以OB=OA又因为OC=OD,角COB=角DOA所以三角形COB全等于三角形DOA所以AD=BC

OA和OB为圆O的半径,且OA垂直OB,延长OB到C,使BC=OB,CD切圆O于D,AD的延长线交OC延长线于E,则角E

连接OD则OA=OB=OD=半径∵CD是圆O的切线∴∠ODC=90º∵BC=OB∴OC=OB+BC=2OB=2OD∴∠OCD=30º【直角三角形中,30º角所对的直角边等

如图⊙O的半径为4cm,OA⊥OB,OC⊥AB于C,OB=4根号5cm,OA=2根号5cm,试说明AB是⊙O的切线

因为AB^2=OA^2+OB^2=20+80=100所以AB=10cm而三角形ABC的面积为:0.5*OA*OB=0.5*AB*OC即:0.5*2根号5*4根号5=0.5*10*OC解得:OC=4cm

已知,如图,圆心o的半径为4,oa垂直于ob于点o,oc垂直ab于点c,oa=4倍根号5,ob=2倍根号5,求证

因为三角形OAB为直角三角形所以根据勾股定理可得AB=√(OA²+OB²)=10然后计算三角形OAB的面积=OA×OB/2=AB×OC/2于是带入数值计算可得OC=4这样OC的长度

已知半径是1的圆O内切于三角形ABC,满足3OA+4OB+5OC=0(OA、OB、OC、0都为向量),求三角形ABC是面

根据向量运算,推算出ABC是直角三角形,且边长为3、4、5.面积3*4/2=6.具体过程你自己试试.再问:能否给步骤啊?过程啊?再答:步骤有些复杂:用拉密定律,倍角公式,正弦定理。设OA、OB、OC长

已知:如图,OA,OB为⊙O的半径,C,D分别为OA,OB的中点,求证:AD=BC.

证明:∵OA,OB为⊙O的半径,C,D分别为OA,OB的中点,∴OA=OB,OC=OD.在△AOD与△BOC中,∵OA=OB∠O=∠OOD=OC,∴△AOD≌△BOC(SAS).∴AD=BC.

△ABC内接于以O为圆心,1为半径的圆,且向量3OA+4OB+5OC=O,①求向量OA·OB,OB·OC,OC·OA.②

(1).∵A,B,C在单位圆上,∴|OA|=|OB|=|OC|=1取OC与X轴的负向重合,于是OC=icos180?+jsin180?=-i,5oc=-5i.∵3OA+4OB=-5OC=5i,故可在x

如图在半径为4的圆O中,AB.CD是两条直径,M为OB的中点,CM的延长线交圆O于点E

)这是相交弦定理,连AC,EB,因∠CAB=∠CEB,又有对顶角故三角形AMC∽EMB,所以AM*MB=EM*MC2)在直角三角形CDE中,CE=√(CD^2-DE^2)=√(64-15)=7EM=A

射线OA⊥OB,M是OB上一点,且OM=2,圆M的半径为根号3.以点O为旋转中心,射线OA应怎样旋转才能与圆M相切

OA顺时针绕O点旋转30度,即可与圆M相切.设切点为P,MP=R=√3,〈OPM=90度,OM=2,sin<POM=PM/OM=√3/2.<POM=60度,∴〈AOP=30度.