如图圆o的弦ad平行dc过点d的切线交bc的延长线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:48:54
证明:连接DCAD//BC,AC//DE四边形ACED是平行四边形
证明(1):∵AD=DC,DE=DE,∠ADE=∠CDE=90度,∴△ADE≌△CDE(SAS),∴AE=CE.∴∠2=∠3,∴∠F=∠2=∠3.又∵∠2+∠3+∠4=90=∠1+∠2+∠F,∴∠1=
(1)连接MD,由于点E是DC的中点,ME⊥DC,所以MD=MC,然后利用已知条件证明△AMD≌△FMC,根据全等三角形的性质可以推出∴∠MAD=∠MFC=120°,接着得到∠MAB=30°,再根据3
http://hi.baidu.com/%D2%E3%CB%BF%CD%D0%C2%E5%B7%F2%CB%B9%BB%F9/blog/item/59abf08e134884e3f01f36c4.ht
因为AD//OC所以角1=角3角2=角4又因为OD=0A所以角1=角2所以角3=角4在三角形OBC和三角形ODC中OB=OD角3=角4OC=OC所以三角形OBC和三角形ODC全等又因为OB垂直于BC所
(1)证明:连接OD,交AC于E,如图所示,∵AD=DC,∴OD⊥AC;又∵AC∥MN,∴OD⊥MN,所以MN是⊙O的切线.(2)设OE=x,因AB=10,所以OA=5,ED=5-x;又因AD=6,在
证明:(1)延长FP交DC于点G,∵AB∥CD,AC∥FG,∴四边形AFGC是平行四边形,∴AC=FG(平行四边形的对边相等),∵EG∥AC,∴EPOA=DPDO=PGOC(被平行线所截的线段对应成比
过O作OM//AD交CD于M,过E作EN//AD交CD于N则△GFD∽△GOM∽△GEN
http://www.jyeoo.com/math/ques/detail/e1250628-5d7e-4a93-9d33-9d1587952733有一题不知是否LZ的题目可供LZ借鉴.再问:我觉得第
连接DO.∠DOB=2∠DAO(同弧所对的圆周角是圆心角的一半)△DOC≌△BOC(OC=OC,∠DOC=∠BOC,OD=OB(半径))∠ODC=∠OBC,由于BC是和⊙O相切于点B的切线所以∠ODC
连接OD∵OA=OB=OD∴∠ODA=∠OAD∵AD平分∠BAC∴∠BAD=∠CAD即∠OAD=∠EAD=∠ODA∵DE⊥AC∴∠EAD+∠EDA=90°∴∠ODA+∠EDA=90°即∠EDO=90°
∵DE∥CF、EF∥DC,∴CDEF是平行四边形,∴ED=FC.∵ED∥AF,∴∠EDA=∠CAD,又∠EAD=∠CAD,∴∠EDA=∠EAD,∴AE=ED.由ED=FC、AE=ED,得:AE=FC.
证明:1)连接OD因为DE与圆O相切于D所以DO⊥DE因为AD平分∠BAC所以弧BD=弧DC所以DO⊥BC(根据垂径定理)所以DE∥BC2)因为弧BD=弧DC所以DC=BD=2因为DE∥BC所以∠E=
(1)连接DO,与AC交于点E,因为角B为弧ADC的圆周角,角AOD为弧AD对的圆心角,又弧AD=弧DC,所以角B=角AOD,因为角B+角BAC=角AOD+角BAC=90度,所以角OEA=90度,所以
如果满意记得采纳哦!你的好评是我前进的动力.(*^__^*) 嘻嘻……我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!
DP=PE.证明如下:∵AB是⊙O的直径,BC是切线,∴AB⊥BC.∴DE∥BC,∴Rt△AEP∽Rt△ABC,得EPBC=AEAB.①又∵AD∥OC,∴∠DAE=∠COB,∴Rt△AED∽Rt△OB
延长AO交⊙O于E,连结DO、DE.∵PD=DC,∴∠C=∠CPD,∴∠CDP=180°-2∠C.∵DC切⊙O于D,∴∠CDO=90°,∴∠CDP+∠ODA=90°,∴180°-2∠C+∠OCA=90
连接OD;∵AD平行于OC,∴∠COD=∠ODA,∠COB=∠A;∵∠ODA=∠A,∴∠COD=∠COB,OC=OC,OD=OB,∴△OCD≌△OCB,∴∠CDO=∠CBO=90°.∴DC是⊙O的切线
连接BD.AD与OC平行,故三角形ADE和三角形OCB相似,所以AE/OB=DE/BC,即AE*BC=DE*OB.三角形AEP相似于三角形ABC,所以AE/AB=EP/BC,即AE*BC=AB*EP.
∵BC为⊙O的切线,∴AB⊥BC,∴∠ABC=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴BD⊥AC,而AD=CD,∴△ABC为等腰直角三角形,∴BD平分∠ABC,∴∠ABD=45°.