如图在圆O中弦ab于cd相交于点e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:43:18
初三上册圆的基本性质已知:如图,在圆O中,AB=CD,AB与CD相交于点M.求证:AM=DM.

连接AC,BD.则劣弧BC所对的∠CAB,∠BDC相等.因为AB=CD所以弧ACB=弧CBD所以劣弧AC=劣弧BD所以AC=BD又因为∠AMC,∠BMD为对顶角∠AMC=∠BMD所以△AMC≌△DMB

如图,已知在圆O中,AB=CD,AB、CD的延长线相交于圆O外一点P,求证PA=PC

证明:作OE⊥AB于E,OF⊥CD于F.则AE=BE;CF=DF.∵AB=CD.∴OE=OF;AE=CF.连接PO,则PO=PO,Rt⊿PEO≌RtΔPFO(HL),得PE=PF.故:PE+AE=PF

如图,在圆O中,弦AB与CD相交于E,AB=CD.求证:三角形AEC全等三角形DEB

AB=CD弧AB=弧CD弧AC=弧CD-弧AD=弧BD∴BD=CA∠ABD=∠ACD=弧AD∠AEC与∠DEB对顶角相等∴ΔAEC≌ΔDEB

如图,在⊙O中,弦AB.CD相交于点P,且AB=CD.求证AC=BD.

因为AB=CD,所以弧AB=弧CD,当然弧AC=弧BD,也即AC=BD再问:如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,求证AC平分∠DAB.再问:再答:

如图,在圆O中,弦AB.CD相交于AB的中点E,连结AD并延长至F,使DF=AD,连结BC.BF.

1)D,E分别为AB,AF中点所以:DE平行BF所以∠AED=∠AEF,∠ADE=∠AFE因为∠AED=∠CEB,∠ADE=∠EBC(圆周角)所以:∠CBE=∠AEF,∠EBC=∠AFE所以:△CBE

如图,在圆O中弦AB.CD相交于点P.若∠APO=∠DPO求证AB=CD.

证明:△∽△≌△∠⊥连接AO、BO、CO、DO△APO和△DPO中:AO=DO=R∠APO=∠DPO………………(1)PO公共边所以:△APO≌△DPO所以:AP=DP……………………(2)∠APC=

已知:如图,在圆O中,弦AB,CD相交于圆外一点P,OP平分∠APC交圆O于E 求(1)AB=CD (2)PB=PD

⑴过O作OM⊥AB于M,ON⊥CDD于N,∵OP平分∠APC,∴OM=ON,∴AB=CD(相等的弦心距所对的弦相等),⑵由垂径定理得BM=1/2AB,DN=1/2CD,∴BM=DN,易得ΔPOM≌ΔP

如图,在圆O中,弦AB、BC相交于点E,OE平分角AEC,求证:AB=CD

1、连接AO、CO△AOE与△COE关于OE对称在圆中△AOE≌△COE,所以AE=CE又因为∠AEB=∠DEC弧BD所对的两个圆周角∠BAD=∠BCD所以△ABE≌△CDE所以AB=CD2、连接AB

如图 在圆o中 弦ab与dc相交于点e,AB=CD试说明BD与CA的大小关系

连接bc,abc和dcb全等,可证再问:第二问详细再答:继续可证deb和aec全等(角角边),be=ce,连co,bo,sss,可得,beo全等ceo,对称

如图,在⊙O中,弦AB与DC相交于点E,AB=CD.

(1)证明:∵AB=CD,∴AB=CD.∴AB-AD=CD-AD.∴BD=CA.∴BD=CA.在△AEC与△DEB中,∠ACE=∠DBE,∠AEC=∠DEB,∴△AEC≌△DEB(AAS).(2)点B

如图,直线AB与CD相交于点O

∵∠COE=3∠EOD,又∠COE+∠EOD=180°∴∠EOD=180°÷(3+1)=45°∵∠AOE=90°∴∠BOE=180°-90°=90°∴∠BOD=∠BOE-∠EOD=90°-45°=45

如图,在圆O中,弦AB、CD相交于点P,且OP⊥CD求证:PD²=AP•PB

这不就是相交弦定理么?AB、CD交于P,则PC*PD=PA*PB,由于P是CD的中点,因此PC=PD,所以PD^2=PA*PB.

如图,在圆O中,弦AB与CD相交于P,、 1 若AB,CD与OP成等角,求证:AB=CD 2 若AB=CD,求证:AC=

证明:1.过O作OE⊥AB于E点,过O作OF⊥CD于F点在直角三角形OPE与直角三角形OPF中∵AB,CD与OP成等角∴∠OPE=∠OPF又OP是公共边∴直角三角形OPE≌直角三角形OPF(角,角,边

如图,直线AB、CD相交于点O,

设∠BOE=2X那么∠EOD=3X∵∠AOC与∠BOD是对顶角∴∠AOC=∠BOD又∠BOD=∠BOE+∠EOD则80°=2X+3X∴X=16°又∠AOD+∠AOC=180°∴∠AOD=180°-∠A

如图,在圆O中,弦AB,BC相交于点E,OE平分角AEC,求证:AB=CD

证明∵OE平分角AEC,OE交圆周于F∴CF弧=FA弧∵∠CEB=∠AED对顶角∴CB弧=DA弧∴CF弧+FA弧+CB弧=DA弧+CF弧+FA弧AB弧=CD弧AB=CD弧相等则弦也相等

如图,在圆O中,AB,CD是两弦,且AB>CD,OE垂直于AB于点E,OF垂直于CD于点F,求证O

做辅助线,连接OA=OB=OC=OD,因为AB大于CD,所以角OAB和角OBA小于角OCD和角ODC,所以OE小于OF.

如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC.

证明:(1)∵弧AD=弧CB,∴∠MCA=∠MAC.∴△MAC是等腰三角形.(2)连接OM,∵AC为⊙O直径,∴∠ABC=90°.∵△MAC是等腰三角形,AM=CM,OA=OC,∴MO⊥AC.∴∠AO

如图;已知AB、CD相交于O,OE平分

因为OE垂直于OF,所以角EOF=90度,即