如图在菱形abcd中点ef分别在边bccd上的点,角b等于角eaf等于60度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:40:57
1.连接AC∵四边形ABCD是菱形,∠B=60°∴∠ACB=∠B=60°,AB=BC=CD=AD∴△ABC是等边△∴AB=AC,∠BAC=60°又∵E是BC的中点∴AE⊥BC,BE=0.5BC,∠BA
连接AC,易知△ABC是等边三角形,AE是BC上的中线也是高,也是∠BAE的角平分线(等边三角形性质),则AB=AC=2,AE=AB*sin60°=根号(3)(这是正弦公式,也可以用勾股定理求解),∠
菱形abcd,∠b=60°所以∠c=120°连接ac得到△abc和△adc为正三角形,所以ae⊥bc,af⊥cd,所以∠aef=60°,∠afe=60°所以△zef为正三角形.且边长=根号3所以周长是
(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).
证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥BF,
由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度
(1)∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E、F分别是边BC、AD的中点,∴BE=DF,在△ABE和△CDF中,∵AB=CD∠B=∠DBE=DF,∴△ABE≌△CDF(S
连接BE,AF∵BD⊥AC;∴BD∥EF;∴四边形BDEF为平形四边形∴ED=BF;E为AD中点∴AE=BF;AE∥BF∴四边形AEBF为平形四边形所以AB与FE互相品分很高兴为您解答,skyhunt
因为E为BC的中点,且AE⊥BC,所以AB=AC(线段垂直平分线上的点到线段两端距离相等)又在菱形ABCD中,AB=BC,所以AB=BC=AC所以△ABC是等边三角形.所以∠BAC=60°,所以∠EA
EF‖BC,AE=1/2*AB△AEF∽△ABCEF=1/2*BCBC=2*EF=8菱形CD=BC=8
证明:∵AB=2AD,∴AD=(1/2)AB又∵E为AB中点,∴BE=AE=(1/2)AB=AD又∵∠A=60°,∴△ADE是等边三角形,∴DE=AE=(1/2)AB同理可证BE=CF=(1/2)CD
正在写请不要采纳别人再问:好吧再答: 再答:望采纳再问:方法给我说一下,我好理解,谢谢再答:用三角形中位线定理
证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥BF,
1.证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥B
如图, ∵AO=CO,∠OAD=∠OCB(内错角),∠AOE=∠COF=90∴△AOE≌△COF, OE=OF∴AECF是菱形(对角线互相垂直且平分的四边形是菱形)
题中所说E,F分别为DB,DC?什么,没说完?再问:中点再答:中点的话,EF=1/2BC=4,BC=8.周长L=4BC=32.
连接AC,∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC为等边三角形,∴AC=AB=AD=CD,∴∠CAD=60°,∴∠BAD=120°,∵E为BC的中点,∴AE⊥BC,∠EAC=3
1.因为 E,F是AB,AC中点, 所以 BC=2EF=2 因为 四边形ABCD是菱形, 所以 菱形ABCD的周长=4BC=8. 1.因为 当 x=1时,ax^2+bx+c=a+b+c,
∵ABCD是菱形∴AD=16÷4=4∵E,F分别是AC,CD的中点∴EF=1/2AD=2∴选B
由题意可知,PQ是△ADC的中位线,则DC=2PQ=2×3=6,那么菱形ABCD的周长=6×4=24,故选C.