如图已知AB是圆o的直径PB切圆o于点B,PA交圆o于点C,角a=60

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:55:58
如图:已知ac是圆o的直径pa垂直ac,连结op,弦cb平行op,直线pb交直线ac于d,bd=2pa证明pb是圆o的切

∵cb//op∴∠aop=∠acb∵ob=oc(bc是弦)∴∠acb=∠obc∵cb//op所以∠obc=bop∴∠aop=∠acb=∠obc=∠bop又有ob=oa,op=op∴△aop≌△bop∴

如图已知AB为圆O的直径,PA、PB是圆O的切线,A、C为切点 ∠BAC=30°

(1)连接OC,因为OA等于OC,角BAC等于30度所以角ACO=角BAC=30度所以角AOC=180°-30°-30°=120°又因为,PA、PB是圆O的切线所以PA⊥AD,PC⊥OC,所以角PAO

已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB

很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB

如图,AB是圆O的直径,PB是圆O的切线,且PB=AB,过点B作PO的垂线,分别交PO,PA于点C,D, 若AD=4,则

PD=8AD/PD=S△ACB/S△CPB=2*S△COB/S△CPB(O为AB的中点)=2*OC/CP这里直角三角形PBO两条直角边的比是1:2,所以上面这个比求出来是1:4所以AD/PD=1/2,

如图,AB是圆O的直径,PB是圆O的切线,且PB=AB,过点B作PO的垂线,分别交PO,PA于点C,D.若AD=4,则P

过D作DE⊥AB垂足EDE=AE=2√2BE=4√2AB=6√2AP=12PD=PA-AD=8再问:BE=4√2是怎么来的?再答:∵PB=AB∴∠A=45°再问:我也知道啊,求不出来啊...BD不知道

如图,已知AC是圆O的直径,PA切圆O于点A,B是圆O上一点,PB=PA

(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2

已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB 怎么

证明:连接AC、BC则∠ACB=90°∵CP⊥AB∴弧BC=弧BD∴∠A=∠BCP∵∠CPB=∠CPA=90°∴△ACP∽△CBP∴CP/AP=BP.CP∴CP²=AP*PB

如图,已知AB是圆O的直径,PB是圆O的切线,PA交圆O于C,AB=3cm,PB=4cm,则BC等于多少厘米?

因为AB是直径,所以∠ACB=90°,所以BC是直角三角形ABP斜边上的高.AB=3,PB=4,所以AP=5,三角形面积=1/2×3×4=6,斜边上的高=6×2/5=2.4也就是BC=2.4

如图 cd是圆o的弦 ab是直径 cd⊥ab于p求证pc²=ap乘pb

证明:连接PA、PB∵AB是直径∴∠ACB=90°∴∠ACP+∠BCP=90°∵CD⊥AB于P∴∠CPB=∠CPA=90°∴∠A+∠ACP=90°,∠B+∠BCP=90°∴∠ACP=∠B,∠A=∠BC

如图,AB是圆o的直径,弦CD⊥AB于点P,若AB=20,AP:PB=1:4,则CD=

利用相交弦定理∵AB=20AP:PB=1:4∴AP=16,PB=4∵AB⊥CD,AB是直径∴P是CD中点(垂径定理)∵AP*PB=CP*PD(相交弦定理)∴PC=PD=8CD=16

如图,AB是圆O的直径,P是弦AC延长线上的一点,且AC=CP,直线PB交圆O于点D.

如图∵AB是⊙O的直径∴∠AEB=90°,即AE⊥BC∴∠BAE+∠ABE=90°又∵CD⊥AB∴∠BCD+∠CBD=90°∴∠BAE=∠BCD又∠ADH=∠CDB∴△AHD∽△CBD∵O点是圆心,C

如图已知P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,PA=2cm,PB=4cm,求图中阴影部分的面

过C点.O点做辅助线CO,过O点做垂线,垂直PA交PA于D.由题意知,角PAB为直角.PB=2PA,所以角ABP等于30度.因圆心角是圆周角的2倍,所以角POA等于60度.在三角形PBA中,PB=4,

如图,点P是⊙O的直径AB延长线上一点,PT切⊙O于点T.已知PT=4,PB=2,求⊙O的半径r.

根据割线定理,得PT2=PA•PB,PA=8,则圆的半径是(8-2)÷2=3.

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图,已知p是圆o外的一点,PA切圆o 于A,AB是圆O的直径,PB交圆O于C,若 PA=2cm,

PA切圆O于A,BA⊥PA,∠BAP=90°,PA=2cm,PB=4cm;PA=PB/2,则∠B=30°;AB²=PB²-PA²=4²-2²=12AB

如图,AB是圆O直径,C为半圆的三等分点,PB、PC分别切圆O于C,且AB=14,PA交圆于点D,DE平行PB交AB于F

作辅助线DEAB=14,C为半圆的三等分点,则PB=7√3,AP=7√7AD/AP=AE/AB,得出AE/AD=2/√7又角ADB=角AED=90°所以△ADE∽△ABD,则AE/AD=AD/AB=2

如图,AB是圆O的直径.PA垂直于圆O所在的平面,C是圆O上不同于A,B的任一点,若E.F分别在PB.PC上,AE⊥PB

证明:PA⊥面ABC,→PA⊥BC,又∵AC⊥BC,∴BC⊥面PAC,∵AF在面PAC内,∴BC⊥AF,又∵AF⊥PC,∴AF⊥面PBC,∵PB在面PBC内,∴AF⊥PB,又∵PB⊥AE,∴PB⊥面A

如图已知PA、PB分别切圆O于点A和B,AC为圆O的直径,PC交AB于E,ED垂直AC于D,过E作PB的平行线交BC于F

经过半个小时的研究,你懂的第一个问,因为PA是切线,所以PA垂直于AC,又因为ED垂直于AC,所以PA平行于DE,所以DE除以PA等于CE除以CP,又因为EF平行于PB,所以EF除以PB也等于CE除以