如图已知AC是四边形ABCD的对角线DE垂直AC,BF垂直AC,求证四边形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:34:06
1.DE垂直AB,AB垂直CE,则AB垂直平面CDE2.DE垂直AB,CE垂直AB,则DE垂直面ABC,即平面CDE垂直年ABCF点没有说,前两题不懂可以hi我
证明:∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH=1/2AD同理:FG是△ACD的中位线,EG是△ABC的中位线,FH是△BCD的中位线∴FG=1/2AD,EG=1/2BC,FH=
证明:∵E、H分别为AB、BD的中点∴EH为三角形ABD的中位线∴EH‖AD,且EH=AD/2同理GF‖AD,且GF=AD/2∴EH‖GF,且EH=GF∴四边形EGFH是平行四边形
证明:如图∵AB=CD(已知) E.G为中点∴AE=BE=DG=CG(中点定义)又∵AD=CD(已知) &n
简单再问:好吧!再答:我做再答: 再答:早再答:对了再答:给好评再答:给嘛!再答:hi再问:谢谢。再问:很好!再问:很好!再问:错了我找你。再答:加入梦之都群368575682为你解答再问:
证明:(1)∵BC=AC,AD=BD,E是AB的中点,由等腰三角形的性质可得CE⊥AB,DE⊥AB.这样,AB垂直于平面CDE中的两条相交直线CE和DE,∴AB⊥平面CDE.(2)由(1)AB⊥平面C
AD=10cm,AB=14cm∵△AOD的周长=AO+DO+AD△COD的周长=DO+CO+CD=DO+AO+CD由题意知AO+DO+AD+4=DO+AO+CD,AD+4=CD所以2(AD+CD)=4
因为AC与BD是圆O的两条直径,利用圆心角是所对的圆周角的两倍,即可以得出角A,角B,角C,角D都是直角.再利用直径相等(即AC=BD),AB=BA,角A=角B,说明三角形ABD与三角形BAC全等,可
证明:连接BD交AC与O点(1分)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,(2分)又∵AP=CQ,∴AP+AO=CQ+CO,即PO=QO,(2分)∴四边形PBQD是平行四边形.(2分)
菱形有一个特点,AC对角线平分角A、角C.角BCD=角DCEBC=CDCE=CE所以△BCE≌△DCE所以角CBE=角CDE又AF//CD所以∠CDE=∠AFE所以∠AFD=∠AFE=∠CBE
证明:连接BF、FD、DE、EB.因为:ABCD是平行四边形.O是对角线AC、BD交点.所以:AO=CO.又因为:E,F是直线AC上的两点,并且AF=CE.AF-AO=CE-OC、所以:EO=FO.(
AC交BD于O点,三角形ADO与三角形BOC相似,所以DO=BO,对角线互相垂直且平分的四边形是菱形
∵∠1=∠2∴AD∥BC∵AE=CF∴AE—EF=CF—EF∴AF=CE又∵BE⊥ACDF⊥AC∴∠AFD=∠CEB∴△AFD≌△CEB(ASA)∴DF=BE又∵BE⊥ACDF⊥AC且AE=CF∴△A
(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1
解题思路:题没有写完整,请在下面补充完整解题过程:题没有写完整,请在下面补充完整
∵ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAF=∠DCE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,BF∥DE(垂直于同一条直线的两直线平行),∴ΔABF≌ΔCDE(AAS