如图已知pa,pb切于A,B点,PO=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:57:07
链接OB、OA,由于OB、OA为圆半径所以OB=OA因为PA,PB切圆O于点A,所以PA⊥OA,PB⊥OB,所以∠PBO=∠PAO=90°因为PA⊥PB于点P,所以∠APB=90°=∠PBO=∠PAO
(1)连结OA、OB,则OA⊥AP,OB⊥BP∴∠AOB=180°-∠APB=110°∠AQB=1/2∠AOB=55°(2)由切割线定理PA^2=PD*PE=PD*(PD+DE)可算得DE=6,∴圆的
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
证明:1、∵PA,PB切圆O于点A,B∴PA=PB,又∵CD切圆O于点E,∴CA=CEDB=DE∴三角形PCD的周长=PC+PD+CD=PC+PD+CE+DE=PC+PD+CA+BD=PA+PB=2P
连接AO与BO则AOBP是正方形S=16S扇形AOB=4πS影=16-4π
由切圆可知,oa,ob分别垂直pa,pb,圆半径=4,面积=1/4兀*4*4-1/2*4*4=4兀-8
(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2
根据圆外一点至圆作二切线段相等的性质,QA=QE,DE=DB,∴△PQD周长=PQ+QD+PD=PQ+QA+DB+PD=PA+PB=2PA=10cm.
∵PA、PB切⊙O于A、B,DE切⊙O于C,∴PA=PB=8,CD=AD,CE=BE;∴△PDE的周长=PD+PE+CD+CE=2PA=16(cm).
连接OA,OB∵PA、PB切圆O于A、B两点∴∠PAO=∠PBO=90°AO=BOPO=PO∴RT⊿PAO≌RT⊿PBO(HL)∴∠APO=∠BPO=∠APB=30°∵PO=4㎝∴AP=BP=2㎝,A
连接OA.∵PA切⊙O于A点,∴OA⊥AP,在Rt△AOP中,设OA=OB=r,则OA2+AP2=OP2,即r2+152=(r+9)2,解得r=8,即⊙O的半径为8cm.
(1)证明:如图,连接OA,则OA⊥AP,∵CD⊥AP,∴CD∥OA,∵CO∥AP,∴四边形ANMO是矩形,∴CO=DA;(2)连接OB,则OB⊥BP∵OA=CD,OA=OB,CO∥AP.∴OB=CD
经过半个小时的研究,你懂的第一个问,因为PA是切线,所以PA垂直于AC,又因为ED垂直于AC,所以PA平行于DE,所以DE除以PA等于CE除以CP,又因为EF平行于PB,所以EF除以PB也等于CE除以
根据已知条件,可得角PBA=40°因为角PBA与∠a是对顶角,两者相等,所以∠a=40°再问:可以详细点吗?再答:这就是过程啊。∵PA⊥AB∴∠PAB=90°∴∠PBA=40°又∵∠PBA=∠a(对顶
设DC切圆O于点E,则DA=DE,CB=CEPA=PD+DA=PA+DE,PB=PC+CB=PC+CE△PCD周长为:PC+PD+CE=PD+DE+PC+CE=PA+PB=14再问:为什么da=de,
∵PA、PB切圆O于A、B∴PB=PA=5∵CD切圆O于E∴DA=DE,BC=CE∴△PCD的周长=PC+CD+PD=PC+CE+DE+PD=PC+BC+DA+PD=PB+PA=10
求什么再问:求证:∠A=40度再答:再问:这个是角阿尔法吧?再答:不知道、看不清
周长25.02面积37.58再问:有过程么?
PA和圆相切→PA⊥OA→PA⊥ACCO=OA,CB=BP→△COB∽△CAP→∠COB=∠CAP=90°OC=OB→AC=AP→△PAC是等腰直角三角形PA=PC/√2=3√2