如图已知四边形ABCD内接与圆O,A是弧ADC中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:38:33
连接BD,∵AB为⊙O的直径,直线MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故答案为:135°.
∵四边形ABCD内接于圆O∴∠DCB+∠DAB=180°又∠PAD+∠DAB=180°∴∠PAD=∠DCB①∵DP//CA∴∠APD=∠BAC②又∠BAC=∠CDB③(等弧所对相等)由②③可得∠APD
∵∠EDF=∠ADB,∠ADB=∠ACB,∴∠EDF=∠ACB∵∠ADC=180°-∠EDC=180°-∠EDF,∠ACE=180°-∠ACB∴∠ADC=∠ACE∴△ADE全等于△ACE∴AC/AE=
∵DP平分ADC∴∠ADP=∠CDP∵∠ADP,∠ABP是弧AP所对圆周角∴∠ADP=∠ABP(同弧所对的圆周角相等)∵ABCD内接与圆∴∠EBP=∠CDP(圆内接四边形对角等于邻补角)∴∠ABP=∠
首先要限定四边形ABCD在同一个平面上,不是空间四边形.这题可以用反证法证明.投影的基本属性是:1)原来平行的直线的投影依旧是平行的.2)平面上两条不同的直线,投影也是不同的.从题目可知A1B1//C
百度不让发...说有不合适的词语..发你消息里了
证明:∵BD平分∠ABC∴∠ABD=∠CBD∴弧AD=弧CD∴AD=CD(等弧对等弦)∵AB∥CD∴∠CDB=∠ABD∴∠CDB=∠CBD∴CD=BC∴AD=CD=BC
将BD连接形成三角形ABD和三角形CBD,分别以B、D点向AD、BC作垂线,很明显,因为E、F分别为AD、BC的中点,所以三角形BED:三角形ABD=1:2;同理,三角形BFD:三角形CBD=1:2.
对于正方形“内接于”圆,说明是在圆的内部,“外切于”圆,说明是在圆的外部;对于圆“内切于”正方形,说明在正方形内部;“外接于”正方形,说明在正方形外部.四边形内接于圆,等同于,圆外接于四边形,圆内切于
解题思路:本题考察了切线的判定方法,及已知特殊线段的长度,得到三角形ODC是等边三角形,再结合扇形面积公式,等边三角形面积公式,求得阴影部分面积。解题过程:
(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1
设:正方形ABCD的边长为a作辅助线:过A点作EG的平行线交BC于E’,BE’为X. 过B点作FH的平行线交CD于F’,CF’为Y.设中间变量
因为∠ABC=124,所以∠ADC=56,又∠ACD=90,所以∠CAD=34,因为AC平分∠BAD,所以∠BAD=68,所以∠BCD=112.(内接于圆的四边形对角是互补的,直径所对的角为直角)
,△ABD为等边三角形所以,∠BCA=∠BDA=60°在AC上截取一段CE=BC那么,△BCE也是等边三角形则,∠CBE=60°而,∠ABD=60°所以,∠CBE-∠DBE=∠ABD-∠DBE即,∠C
∵圆O中,弧AB=弧AB∴∠BAD=1/2∠BOD∵∠BOD=100°∴∠BAD=50°连接OC并延长,接圆O于E∵圆O中,弧AB=弧AB∴∠A=∠E∵E,C在圆O上,EC过O点∴∠EDC=∠EBC=
∠CBD∠CDB∠CAB∠DCF∠CAF证明:EF是圆的切线所以∠BCE=∠CDB∠DCF=∠CAF=∠DBCBD‖EF所以∠ABD=∠E∠DBC=∠BCE所以∠DBC=∠BDC∠BCE=∠DCF所以
AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/
S﹙EFGH﹚=﹙1/2﹚EG×FH×sin∠EOF [楼主验证!]作DN∥EG,MC∥FH ∴S﹙DMNC﹚=S﹙EFGH﹚=5设S﹙ABCD﹚=S, 则S