如图所示,圆O是△ABC的外接圆,AE是直径,AD是BC边上的高

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:54:29
一道初中关于圆的题在△ABC中,AB=7,AC=6,AD垂直于BC,且AD=5,求△ABC外接圆圆O的半径r

利用外接圆半径公式a/sinA=b/sinB=c/sinC=2r(r为此三角形外接圆半径),得sin角ACB=AD/AC=5/6c/sin角ACB=2rc=AB=7则r=24/5=4,8

如图所示,圆O是△ABC的外接圆.角ABC与角BAC的平分线相交于点I.延长AI交圆O于点D,连结BD、DC.

1∵∠ABC与∠BAC的平分线相交于点I,∴∠BAD=∠CAD,而C⌒D所对圆周角是∠CAD,∠CBD,∴∠CAD=∠CBD,同理,∠BAD=∠BCD,∴∠CBD=∠BCD,∴BD=CD,又∵∠DBI

如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.

第一问你求出来就好办了,当∠BAC=120°时,∠BAD=∠BCD=∠DAC=60°,结合第一问就得出△BDC是等边三角形,圆O就是它的外接园,应该很容易得到△BDC的边长是根号3乘以园的半径,△BD

如图所示,圆O是△ABC的外接圆,角BAC与角ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.

第二个问题:∵A、B、D、C共圆,又∠BAC=120°,∴∠BDC=60°.∴由正弦定理,有:BC/sin∠BDC=2R=20,∴BC=20sin60°=10√3.∵BD=DC、∠BDC=60°,∴△

如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.则BD、D

∵DA平分∠BAC∴弧BD=弧CD,∠DAB=∠CAD∴BD=CD∵BL是∠ABC的角平分线∴∠ABl=∠CBl∴∠DAB+∠ABl=∠CAD+∠CBl∵∠BlD=∠DAB+∠ABl∴∠BlD=∠CA

如图所示,△ABC内接于圆O,点D在OC的延长线上,sinB

解题思路:利用圆的切线的判定定理求证。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ

在三角形abc中,bc等于24厘米,外心o到bc的距离为6厘米,求三角形的外接元的半径是

外心即三角形各边垂直平分线的交点设od垂直bc于d所以cd=1/2bc=12厘米od、oc和cd根据勾股定理od²+cd²=oc²oc²=6²+12&

CE是三角形ABC外接圆圆O的直径,CD⊥AB AD*BC=CE*CD 若CD=6 AD=3 BD=8 求圆O半径

CD=6,BD=8,则BC=10.CD=6,AD=3,则AC=根号45三角形CBE相似于三角形CDA,所以CB/CD=CE/CA即:10/6=CE/根号45CE=5*根号5,圆的半径为5/2*根号5

点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆圆O于点E,连接BE、CE

点I是△ABC的内心,所以AE平分∠BAC,∠BAE=∠CAE,那么弧BE=弧CE,∠BAD=∠ECD,又∠BDA=∠EDC△ABD与△CED相似,AB/CE=AD/CD=2,AD=6,所以CD=3

如图,在三角形ABC中,AB=6,AC=8,∠CAB=60°.求△ABC的内切圆圆I的半径和外接圆圆O的半径

过B作BM⊥AC可得AM=3BM=3√3在△BCM中用勾股定理BC=2√13内切圆圆I的半径为r1/2r(AB+BC+AC)=1/2×8×3√3r=(7√3-√39)/3外接圆圆O的半径过O点作AB,

如图,△ABC是等边三角形(1)用尺规做出△ABC的外接圆圆o,保留作图痕迹,不写做法(2)若△ABC的边长为6

三角形外接圆圆心是三边的垂直平分线交点,所以作其任意两边垂直平分线,这两条垂直平分线交点O,再以点O为圆心,OA为半径作圆,即可得到外接圆.第二问直接用正弦定理即可求解,这应该是初三的题目,我就用初三

如图所示,⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1.

如图,①连接BO,则∠AOB=2∠ACB=2*45°=90°,所以三角形AOB是直角三角形,则有AB=AO*√2=1*√2=√2,在△ABC中,AC/sin∠ABC=AB/sin∠ACB,AC=√2*

如图所示,已知圆O的半径为5,△ABC是圆O的内接三角形,且AC=4 .

如图,圆周角B=1/2<AOC=<AOD,AD=2,sinB=2/5AE=ABsinB=12/5

如图所示,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆交于点D,N为BC延长线上一点,ND交△ABC的外接

证明:(1)∵四点A、B、C、D共圆,∴∠EAD=∠BCD,∠DAC=∠DBC,∵AD是△ABC外角∠EAC的平分线,∴∠EAD=∠DAC,∴∠DBC=∠BCD.∴DB=DC.(2)连接BM,CM.则

(2013•湖南模拟)如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,

(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,

如图所示,△ABC内接于圆O,AD⊥BC于点D,∠BAD=∠CAO,求证AE是圆O的直径

∵∠DAO+∠OAC+∠C=90°同弧所对圆周叫相等∴∠C=∠E又∵,∠BAD=∠CAO∴∠BAD+∠DAO+∠E=90°∴∠ABE=90°∴AE为圆O的直径

如图所示,△ABC内接于圆O,AD为△ABC的高,AM平分∠ABC

证明:(1)延长AO交圆于E,连接BE.∵AE是直径∴角ABE=90°∵∠ABE=∠ADC=90°∠E=∠C∴△ABE∽△ACD∴AB/AE=AD/AC∵AE=2AO∴AB*AC=2AD*AO(2)由

如图所示,圆O是△ABC的内切圆,切点分别为D,E,F,∠DEF=75°,BG过圆O的圆心O,交AC于G.AB=6,AG

1.连接OD、OF,则OD⊥AB,OF⊥AC∠DOF=2∠DEF=150°(同弧所对的圆周角是圆心角的一半)∵∠A+∠DOF+∠ODA+∠OFA=360°(四边形内角和360°)即:∠A+150°+9

如图,AB是△ABC外接圆圆O的直径,D是AB延长线上一点,且BD=1/2AB,∠A=30°,

∵BD=AB/2,AB=2OB,∴BD=OB,∵AB是直径,∴〈ACB=90°,(半圆上圆周角是直角)∵〈A=30°,∴〈ABC=60°,∵OB=OC=R,∴△OBC是正△,∴BC=OB=OC,∴BC

点O是三角形ABC的外接园圆心,点P是三角形ABC内切圆圆心,角BOC+角BPC=90°,求角A?是朋友问我的初中数学题

先随便画个图.易知,点P为角A.B.C,三角的角平分线的交点.且角A为圆周角,角BOC为圆心角.设角A为X,角BOC为2X.连接PB,PC所以:角B+角C=180-角A角PBC+角PCB=90-角A/