如图所示,圆O是△ABC的外接圆,AE是直径,AD是BC边上的高
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:54:29
利用外接圆半径公式a/sinA=b/sinB=c/sinC=2r(r为此三角形外接圆半径),得sin角ACB=AD/AC=5/6c/sin角ACB=2rc=AB=7则r=24/5=4,8
1∵∠ABC与∠BAC的平分线相交于点I,∴∠BAD=∠CAD,而C⌒D所对圆周角是∠CAD,∠CBD,∴∠CAD=∠CBD,同理,∠BAD=∠BCD,∴∠CBD=∠BCD,∴BD=CD,又∵∠DBI
第一问你求出来就好办了,当∠BAC=120°时,∠BAD=∠BCD=∠DAC=60°,结合第一问就得出△BDC是等边三角形,圆O就是它的外接园,应该很容易得到△BDC的边长是根号3乘以园的半径,△BD
第二个问题:∵A、B、D、C共圆,又∠BAC=120°,∴∠BDC=60°.∴由正弦定理,有:BC/sin∠BDC=2R=20,∴BC=20sin60°=10√3.∵BD=DC、∠BDC=60°,∴△
∵DA平分∠BAC∴弧BD=弧CD,∠DAB=∠CAD∴BD=CD∵BL是∠ABC的角平分线∴∠ABl=∠CBl∴∠DAB+∠ABl=∠CAD+∠CBl∵∠BlD=∠DAB+∠ABl∴∠BlD=∠CA
解题思路:利用圆的切线的判定定理求证。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ
外心即三角形各边垂直平分线的交点设od垂直bc于d所以cd=1/2bc=12厘米od、oc和cd根据勾股定理od²+cd²=oc²oc²=6²+12&
CD=6,BD=8,则BC=10.CD=6,AD=3,则AC=根号45三角形CBE相似于三角形CDA,所以CB/CD=CE/CA即:10/6=CE/根号45CE=5*根号5,圆的半径为5/2*根号5
点I是△ABC的内心,所以AE平分∠BAC,∠BAE=∠CAE,那么弧BE=弧CE,∠BAD=∠ECD,又∠BDA=∠EDC△ABD与△CED相似,AB/CE=AD/CD=2,AD=6,所以CD=3
过B作BM⊥AC可得AM=3BM=3√3在△BCM中用勾股定理BC=2√13内切圆圆I的半径为r1/2r(AB+BC+AC)=1/2×8×3√3r=(7√3-√39)/3外接圆圆O的半径过O点作AB,
三角形外接圆圆心是三边的垂直平分线交点,所以作其任意两边垂直平分线,这两条垂直平分线交点O,再以点O为圆心,OA为半径作圆,即可得到外接圆.第二问直接用正弦定理即可求解,这应该是初三的题目,我就用初三
如图,①连接BO,则∠AOB=2∠ACB=2*45°=90°,所以三角形AOB是直角三角形,则有AB=AO*√2=1*√2=√2,在△ABC中,AC/sin∠ABC=AB/sin∠ACB,AC=√2*
如图,圆周角B=1/2<AOC=<AOD,AD=2,sinB=2/5AE=ABsinB=12/5
证明:(1)∵四点A、B、C、D共圆,∴∠EAD=∠BCD,∠DAC=∠DBC,∵AD是△ABC外角∠EAC的平分线,∴∠EAD=∠DAC,∴∠DBC=∠BCD.∴DB=DC.(2)连接BM,CM.则
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,
∵∠DAO+∠OAC+∠C=90°同弧所对圆周叫相等∴∠C=∠E又∵,∠BAD=∠CAO∴∠BAD+∠DAO+∠E=90°∴∠ABE=90°∴AE为圆O的直径
证明:(1)延长AO交圆于E,连接BE.∵AE是直径∴角ABE=90°∵∠ABE=∠ADC=90°∠E=∠C∴△ABE∽△ACD∴AB/AE=AD/AC∵AE=2AO∴AB*AC=2AD*AO(2)由
1.连接OD、OF,则OD⊥AB,OF⊥AC∠DOF=2∠DEF=150°(同弧所对的圆周角是圆心角的一半)∵∠A+∠DOF+∠ODA+∠OFA=360°(四边形内角和360°)即:∠A+150°+9
∵BD=AB/2,AB=2OB,∴BD=OB,∵AB是直径,∴〈ACB=90°,(半圆上圆周角是直角)∵〈A=30°,∴〈ABC=60°,∵OB=OC=R,∴△OBC是正△,∴BC=OB=OC,∴BC
先随便画个图.易知,点P为角A.B.C,三角的角平分线的交点.且角A为圆周角,角BOC为圆心角.设角A为X,角BOC为2X.连接PB,PC所以:角B+角C=180-角A角PBC+角PCB=90-角A/